Quantum field theories on Lorentzian manifolds

Alexander Schenkel

School of Mathematical Sciences, University of Nottingham

Geometric/Topological Quantum Field Theories and Cobordisms, 15–18 March 2023, NYU Abu Dhabi.

Based on a research program with <u>Marco Benini</u>, with contributions from S. Bruinsma, S. Bunk, V. Carmona, C. Fewster, L. Giorgetti, A. Grant-Stuart, J. MacManus,

 \diamond **Spacetime** := oriented and time-oriented globally hyperbolic Lorentzian manifold N

- \diamond **Spacetime** := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- \diamond **Spacetime embedding** := orientation and time-orientation preserving isometric embedding $f:M\to N$ s.t. $f(M)\subseteq N$ is open and causally convex

- \diamond **Spacetime** := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- \diamond **Spacetime embedding** := orientation and time-orientation preserving isometric embedding $f: M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex

- \diamond **Spacetime** := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- \diamond **Spacetime embedding** := orientation and time-orientation preserving isometric embedding $f:M\to N$ s.t. $f(M)\subseteq N$ is open and causally convex

- \diamond The following (tuples of) \mathbf{Loc}_m -morphisms will be important:
 - (i) Cauchy morphism: $f:M\to N$ s.t. $f(M)\subseteq N$ contains Cauchy surface of N

- \diamond **Spacetime** := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- \diamond Spacetime embedding := orientation and time-orientation preserving isometric embedding $f:M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex

- \diamond The following (tuples of) Loc_m-morphisms will be important:
 - (i) Cauchy morphism: $f:M\to N$ s.t. $f(M)\subseteq N$ contains Cauchy surface of N
 - (ii) Causally disjoint pair: $(f_1:M_1\to N)\perp (f_2:M_2\to N)$ s.t. $J_N(f_1(M_1))\cap f_2(M_2)=\emptyset$

- \diamond **Spacetime** := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- \diamond **Spacetime embedding** := orientation and time-orientation preserving isometric embedding $f:M\to N$ s.t. $f(M)\subseteq N$ is open and causally convex

- \diamond The following (tuples of) **Loc**_m-morphisms will be important:
 - (i) Cauchy morphism: $f:M\to N$ s.t. $f(M)\subseteq N$ contains Cauchy surface of N
 - (ii) Causally disjoint pair: $(f_1:M_1\to N)\perp (f_2:M_2\to N)$ s.t. $J_N(f_1(M_1))\cap f_2(M_2)=\emptyset$
 - (iii) Time-ordered tuple: $\underline{f} = (f_1, \dots, f_n) : \underline{M} = (M_1, \dots, M_n) \to N$ s.t. $J_N^+(f_i(M_i)) \cap f_j(M_j) = \emptyset$, for all i < j

- \diamond **Spacetime** := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- \diamond **Spacetime embedding** := orientation and time-orientation preserving isometric embedding $f: M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex
- **Def:** Denote by \mathbf{Loc}_m the category of m-dim. spacetimes and spacetime embeddings.

- \diamond The following (tuples of) \mathbf{Loc}_m -morphisms will be important:
 - (i) Cauchy morphism: $f:M\to N$ s.t. $f(M)\subseteq N$ contains Cauchy surface of N
 - (ii) Causally disjoint pair: $(f_1:M_1\to N)\perp (f_2:M_2\to N)$ s.t. $J_N(f_1(M_1))\cap f_2(M_2)=\emptyset$
 - (iii) Time-ordered tuple: $\underline{f}=(f_1,\ldots,f_n):\underline{M}=(M_1,\ldots,M_n)\to N$ s.t. $J_N^+(f_i(M_i))\cap f_j(M_j)=\emptyset$, for all i< j
 - (iv) Time-orderable tuple: $\underline{f}:\underline{M}\to N$ s.t. there exists $\rho\in\Sigma_n$ (time-ordering permutation) with $f\rho=(f_{\rho(1)},\dots,f_{\rho(n)}):\underline{M}\rho\to N$ time-ordered

 \diamond Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one should study the following algebraic structure (for $T = SM (\infty)$ -)category)

 \diamond Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one should study the following algebraic structure (for T = SM (∞ -)category)

Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one should study the following algebraic structure (for T = SM (∞ -)category)

Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one should study the following algebraic structure (for T = SM (∞ -)category)

that satisfies the (homotopy) time-slice axiom

 \diamond Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one should study the following algebraic structure (for $T = SM (\infty)$ -)category)

that satisfies the (homotopy) time-slice axiom

♦ This is governed by the AQFT operad [Benini/AS/Woike, Benini/Carmona/AS]

$$\mathcal{O}_{(\mathbf{Loc}_m,\perp)}[\mathrm{Cauchy}^{-1}]^{\infty} \simeq (\mathcal{P}_{(\mathbf{Loc}_m,\perp)} \otimes \mathsf{uAs})[\mathrm{Cauchy}^{-1}]^{\infty}$$

Alexander Schenkel QFTs on Lorentzian manifolds Abu Dhabi 2023 3 / 9

Prop: [Benini/Woike/AS] Given orthogonal category (C, \bot) and $W \subseteq \operatorname{Mor} C$, then

$$\mathcal{O}_{(\mathbf{C},\perp)}[W^{-1}] \simeq \mathcal{O}_{(\mathbf{C}[W^{-1}],L_*(\perp))}$$
,

where $L: \mathbf{C} \to \mathbf{C}[W^{-1}]$ is localization of underlying category.

Prop: [Benini/Woike/AS] Given orthogonal category (C, \bot) and $W \subseteq \operatorname{Mor} C$, then

$$\mathcal{O}_{(\mathbf{C},\perp)}[W^{-1}] \simeq \mathcal{O}_{(\mathbf{C}[W^{-1}],L_*(\perp))}$$
,

where $L: \mathbf{C} \to \mathbf{C}[W^{-1}]$ is localization of underlying category.

♦ In low dimensions, these localizations can be determined explicitly. E.g.

Prop: [Benini/Woike/AS] Given orthogonal category (\mathbf{C}, \perp) and $W \subseteq \mathrm{Mor}\,\mathbf{C}$, then

$$\mathcal{O}_{(\mathbf{C},\perp)}[W^{-1}] \simeq \mathcal{O}_{(\mathbf{C}[W^{-1}],L_*(\perp))}$$
,

where $L: \mathbf{C} \to \mathbf{C}[W^{-1}]$ is localization of underlying category.

- ♦ In low dimensions, these localizations can be determined explicitly. E.g.
 - (i) 1-dim. AQFT \mathfrak{A} on $\mathbf{Loc}_1 \iff [\mathsf{Benini/Carmona/AS}]$

Alexander Schenkel QFTs on Lorentzian manifolds Abu Dhabi 2023 4 / 9

Prop: [Benini/Woike/AS] Given orthogonal category (\mathbf{C}, \perp) and $W \subseteq \mathrm{Mor}\,\mathbf{C}$, then

$$\mathcal{O}_{(\mathbf{C},\perp)}[W^{-1}] \simeq \mathcal{O}_{(\mathbf{C}[W^{-1}],L_*(\perp))}$$
,

where $L: \mathbf{C} \to \mathbf{C}[W^{-1}]$ is localization of underlying category.

- ♦ In low dimensions, these localizations can be determined explicitly. E.g.
 - (i) 1-dim. AQFT \mathfrak{A} on $\mathbf{Loc}_1 \iff [\mathsf{Benini/Carmona/AS}]$

(ii) 2-dim. conformal AQFT \mathfrak{A} on $CLoc_2 \iff [Benini/Giorgetti/AS]$

$$\operatorname{Emb}(\mathbb{R})^2 \left\langle \ \mathfrak{A}(\diamondsuit) \ \stackrel{\operatorname{Emb}(\diamondsuit, \overline{\square})}{----} \right\rangle \ \mathfrak{A}(\overline{\square}) \ \right\rangle \operatorname{Diff}(\mathbb{S}^1)^2$$

Prop: [Benini/Woike/AS] Given orthogonal category (C, \bot) and $W \subseteq \operatorname{Mor} C$, then

$$\mathcal{O}_{(\mathbf{C},\perp)}[W^{-1}] \, \simeq \, \mathcal{O}_{(\mathbf{C}[W^{-1}],L_*(\perp))} \quad , \quad$$

where $L: \mathbf{C} \to \mathbf{C}[W^{-1}]$ is localization of underlying category.

- ♦ In low dimensions, these localizations can be determined explicitly. E.g.
 - (i) 1-dim. AQFT \mathfrak{A} on $\mathbf{Loc}_1 \iff [\mathsf{Benini/Carmona/AS}]$

$$\mathbb{R} \, \Big\langle \, \mathfrak{A}(\textbf{|}) \, \big| = \quad \text{dynamical system with time evolution} \\ = \quad \text{quantum mechanics}$$

(ii) 2-dim. conformal AQFT \mathfrak{A} on $CLoc_2 \iff [Benini/Giorgetti/AS]$

$$\operatorname{Emb}(\mathbb{R})^2 \left(\ \mathfrak{A}\left(\diamondsuit\right) \ \xrightarrow{\operatorname{Emb}\left(\diamondsuit, \ \right)} \ \mathfrak{A}\left(\ \right) \ \right) \operatorname{Diff}(\mathbb{S}^1)^2$$

Open problem: Higher dimensions? Some speculations later...

Strictifying the time-slice axiom (for $\mathbf{T} = \mathbf{Ch}_{\mathbb{K}}$ with $\mathrm{char} \, \mathbb{K} = 0$)

- \diamond There are two (i.g. different) model categories for $\mathbf{Ch}_{\mathbb{K}}$ -valued AQFTs:
 - (i) Strict time-slice axiom (projective model structure)

$$\mathbf{AQFT}(\mathbf{C},\bot)^W \: := \: \mathbf{Alg}_{\mathcal{O}_{\left(\mathbf{C}[\textcolor{red}{\mathbf{W}}^{-1}],L_*(\bot)\right)}}\big(\mathbf{Ch}_{\textcolor{blue}{\mathbb{K}}}\big)$$

Strictifying the time-slice axiom (for $T = Ch_K$ with char K = 0)

- \diamond There are two (i.g. different) model categories for $\mathbf{Ch}_{\mathbb{K}}$ -valued AQFTs:
 - (i) Strict time-slice axiom (projective model structure)

$$\mathbf{AQFT(C,\bot)}^W \; := \; \mathbf{Alg}_{\mathcal{O}_{\left(\mathbf{C}[\textcolor{red}{W}^{-1}],L_*(\bot)\right)}}\big(\mathbf{Ch}_{\textcolor{blue}{\mathbb{K}}}\big)$$

(ii) Homotopy time-slice axiom (left Bousfield localization à la [Carmona])

$$\mathbf{AQFT}(\mathbf{C},\bot)^{\mathrm{ho}W} \,:=\, \mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}[\underline{W}^{-1}]^{\infty}}\big(\mathbf{Ch}_{\mathbb{K}}\big) \simeq \underline{\mathcal{L}_{\widehat{W}}} \mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

Strictifying the time-slice axiom (for $T = Ch_K$ with char K = 0)

- \diamond There are two (i.g. different) model categories for $\mathbf{Ch}_{\mathbb{K}}$ -valued AQFTs:
 - (i) Strict time-slice axiom (projective model structure)

$$\mathbf{AQFT}(\mathbf{C},\bot)^W \: := \: \mathbf{Alg}_{\mathcal{O}_{\left(\mathbf{C}[\textcolor{red}{\mathbf{W}}^{-1}],L_*(\bot)\right)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

(ii) Homotopy time-slice axiom (left Bousfield localization à la [Carmona])

$$\mathbf{AQFT}(\mathbf{C},\bot)^{\mathrm{ho}W} \,:=\, \mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}[W^{-1}]^{\infty}}\big(\mathbf{Ch}_{\mathbb{K}}\big) \simeq \frac{\mathcal{L}_{\widehat{W}}}{\mathcal{A}}\mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

Thm: [Benini/Carmona/AS] The localization functor $L:(\mathbf{C},\bot)\to (\mathbf{C}[W^{-1}],L_*(\bot))$ defines a Quillen adjunction

$$L_!: \mathbf{AQFT}(\mathbf{C}, \perp)^{\mathrm{ho}W} \xrightarrow{} \mathbf{AQFT}(\mathbf{C}, \perp)^W: L^*$$

If L is a reflective orthogonal localization, then this is a Quillen equivalence.

Strictifying the time-slice axiom (for $\mathbf{T} = \mathbf{Ch}_{\mathbb{K}}$ with $\operatorname{char} \mathbb{K} = 0$)

- \diamond There are two (i.g. different) model categories for $\mathbf{Ch}_{\mathbb{K}}$ -valued AQFTs:
 - (i) Strict time-slice axiom (projective model structure)

$$\mathbf{AQFT}(\mathbf{C},\bot)^W \; := \; \mathbf{Alg}_{\mathcal{O}_{\left(\mathbf{C}[\textcolor{red}{\mathbf{W}^{-1}}],L_*(\bot)\right)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

(ii) Homotopy time-slice axiom (left Bousfield localization à la [Carmona])

$$\mathbf{AQFT}(\mathbf{C},\bot)^{\mathrm{ho}W} \,:=\, \mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}[{\color{blue}W^{-1}}]^{\infty}}\big(\mathbf{Ch}_{\mathbb{K}}\big) \simeq \frac{\mathcal{L}_{\widehat{W}}}{\mathcal{A}}\mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

Thm: [Benini/Carmona/AS] The localization functor $L:(\mathbf{C},\bot)\to (\mathbf{C}[W^{-1}],L_*(\bot))$ defines a Quillen adjunction

$$L_!: \mathbf{AQFT}(\mathbf{C}, \perp)^{\mathrm{ho}W} \xrightarrow{\longleftarrow} \mathbf{AQFT}(\mathbf{C}, \perp)^W: L^*$$

If L is a $\emph{reflective orthogonal localization}$, then this is a Quillen equivalence.

!!! Strictification theorems for the homotopy time-slice axiom for AQFTs on \mathbf{Loc}_1 , \mathbf{CLoc}_2 and Haag-Kastler-type \mathbf{Loc}_m/M .

Strictifying the time-slice axiom (for $\mathbf{T} = \mathbf{Ch}_{\mathbb{K}}$ with $\operatorname{char} \mathbb{K} = 0$)

- \diamond There are two (i.g. different) model categories for $\mathbf{Ch}_{\mathbb{K}}$ -valued AQFTs:
 - (i) Strict time-slice axiom (projective model structure)

$$\mathbf{AQFT}(\mathbf{C},\bot)^W \; := \; \mathbf{Alg}_{\mathcal{O}_{\left(\mathbf{C}[\textcolor{red}{\mathbf{W}^{-1}}],L_*(\bot)\right)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

(ii) Homotopy time-slice axiom (left Bousfield localization à la [Carmona])

$$\mathbf{AQFT}(\mathbf{C},\bot)^{\mathrm{ho}W} \,:=\, \mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}[{\color{blue}W^{-1}}]^{\infty}}\big(\mathbf{Ch}_{\mathbb{K}}\big) \simeq \frac{\mathcal{L}_{\widehat{\mathbf{W}}}}{\mathcal{A}}\mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

Thm: [Benini/Carmona/AS] The localization functor $L:(\mathbf{C},\bot)\to (\mathbf{C}[W^{-1}],L_*(\bot))$ defines a Quillen adjunction

$$L_!: \mathbf{AQFT}(\mathbf{C}, \perp)^{\mathrm{ho}W} \stackrel{\longrightarrow}{\longleftarrow} \mathbf{AQFT}(\mathbf{C}, \perp)^W: L^*$$

If L is a reflective orthogonal localization, then this is a Quillen equivalence.

- !!! Strictification theorems for the homotopy time-slice axiom for AQFTs on \mathbf{Loc}_1 , \mathbf{CLoc}_2 and Haag-Kastler-type \mathbf{Loc}_m/M .
- **Rem:** Very different behavior to topological QFTs (via locally constant factorization algebras on \mathbb{R}^m) \longleftrightarrow \mathbb{E}_m -algebras [Lurie, Ayala/Francis]

 \diamond Input data: A natural collection $\{\mathcal{F}(M),Q_M,\omega_M\}_{M\in\mathbf{Loc}_m}$ of free BV theories [Costello/Gwilliam], i.e. $(\mathcal{F}(M),Q_M)$ is a complex of differential operators and ω_M is a (-1)-shifted symplectic structure.

- \diamond Input data: A natural collection $\{\mathcal{F}(M),Q_M,\omega_M\}_{M\in\mathbf{Loc}_m}$ of free BV theories [Costello/Gwilliam], i.e. $(\mathcal{F}(M),Q_M)$ is a complex of differential operators and ω_M is a (-1)-shifted symplectic structure.
- Central hypothesis: Green-hyperbolic complexes, i.e. there exists (pseudo-)natural family of retarded/advanced Green's homotopies

$$\left\{\Lambda_K^{\pm} \in \left[\mathcal{F}_K(M), \mathcal{F}_{\mathbf{J}_{\underline{M}}^{\pm}(K)}(M)\right]^{-1} \, : \, \partial \Lambda_K^{\pm} = \mathrm{incl} \right\}_{K \subseteq M \text{ compact}}$$

- \diamond Input data: A natural collection $\{\mathcal{F}(M),Q_M,\omega_M\}_{M\in\mathbf{Loc}_m}$ of free BV theories [Costello/Gwilliam], i.e. $(\mathcal{F}(M),Q_M)$ is a complex of differential operators and ω_M is a (-1)-shifted symplectic structure.
- Central hypothesis: Green-hyperbolic complexes, i.e. there exists (pseudo-)natural family of retarded/advanced Green's homotopies

$$\left\{\Lambda_K^{\pm} \in \left[\mathcal{F}_K(M), \mathcal{F}_{\mathbf{J}_{\underline{M}}^{\pm}(K)}(M)\right]^{-1} \, : \, \partial \Lambda_K^{\pm} = \mathrm{incl} \right\}_{K \subseteq M \text{ compact}}$$

Thm: [Benini/Musante/AS] One can construct from this data an AQFT $\mathfrak{A} \in \mathbf{AQFT}(\mathbf{Loc}_m, \perp)^{\mathrm{hoCauchy}}$.

- \diamond Input data: A natural collection $\{\mathcal{F}(M),Q_M,\omega_M\}_{M\in\mathbf{Loc}_m}$ of free BV theories [Costello/Gwilliam], i.e. $(\mathcal{F}(M),Q_M)$ is a complex of differential operators and ω_M is a (-1)-shifted symplectic structure.
- Central hypothesis: Green-hyperbolic complexes, i.e. there exists (pseudo-)natural family of retarded/advanced Green's homotopies

$$\left\{\Lambda_K^{\pm} \in \left[\mathcal{F}_K(M), \mathcal{F}_{\mathbf{J}_M^{\pm}(K)}(M)\right]^{-1} \, : \, \partial \Lambda_K^{\pm} = \mathrm{incl} \right\}_{K \subseteq M \text{ compact}}$$

Thm: [Benini/Musante/AS] One can construct from this data an AQFT $\mathfrak{A} \in \mathbf{AQFT}(\mathbf{Loc}_m, \perp)^{\mathrm{hoCauchy}}$.

Ex: Linear Yang-Mills theory [Benini/Bruinsma/AS]

 \diamond Time-orderable prefactorization algebras on \mathbf{Loc}_m [Benini/Perin/AS]:

 \diamond With some Lorentzian geometry, one shows that there exists an operad morphism $\Phi: t\mathcal{P}_{\mathbf{Loc}_m} \to \mathcal{O}_{(\mathbf{Loc}_m, \perp)}$ to the AQFT operad.

- \diamond With some Lorentzian geometry, one shows that there exists an operad morphism $\Phi: t\mathcal{P}_{\mathbf{Loc}_m} \to \mathcal{O}_{(\mathbf{Loc}_m, \perp)}$ to the AQFT operad.
- **Thm:** [Benini/Perin/AS] For target ${f T}=$ cocomplete SM 1-category, we have an equivalence of categories

$$\Phi_{!} \,:\, \mathbf{tPFA}^{\operatorname{Cauchy}, \mathbf{add}}_{m} \, \begin{cases} & \longleftarrow \\ & \longleftarrow \\ & \longrightarrow \\ & \bullet \\$$

 \diamond Time-orderable prefactorization algebras on \mathbf{Loc}_m [Benini/Perin/AS]:

- \diamond With some Lorentzian geometry, one shows that there exists an operad morphism $\Phi: t\mathcal{P}_{\mathbf{Loc}_m} \to \mathcal{O}_{(\mathbf{Loc}_m, \perp)}$ to the AQFT operad.
- **Thm:** [Benini/Perin/AS] For target ${f T}=$ cocomplete SM 1-category, we have an equivalence of categories

$$\Phi_{!}\,:\,\mathbf{tPFA}^{\operatorname{Cauchy},\mathbf{add}}_{m}\, \ \, \ \, \ \, \ \, \ \, \mathbf{AQFT}(\mathbf{Loc}_{m},\bot)^{\operatorname{Cauchy},\mathbf{add}}\,:\,\Phi^{*}$$

 \diamond *Open problem:* Generalization to $\mathbf{T} = \mathsf{SM}$ ∞ -category, in particular $\mathbf{T} = \mathbf{Ch}_{\mathbb{K}}$? In this case there are so far only example-based comparisons [Gwilliam/Rejzner, Benini/Musante/AS].

 \diamond Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces, all bordisms are cylinders $M \cong \mathbb{R} \times \Sigma$, but with rich geometry!

- \diamond Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces, all bordisms are cylinders $M \cong \mathbb{R} \times \Sigma$, but with rich geometry!
- \diamond Conjecture: Consider the subcategory $\mathbf{Cau}_m \subseteq \mathbf{Loc}_m$ given by all objects, but only Cauchy morphisms. I believe that its localization

$$\mathbf{Cau}_m[\mathbf{Cauchy}^{-1}] \simeq \mathbf{LBord}_m[\mathbf{All}^{-1}]$$

is equivalent to a Stolz-Teichner-style globally hyperbolic Lorentzian bordism category, localized at all bordisms.

- \diamond Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces, all bordisms are cylinders $M \cong \mathbb{R} \times \Sigma$, but with rich geometry!
- \diamond Conjecture: Consider the subcategory $\mathbf{Cau}_m \subseteq \mathbf{Loc}_m$ given by all objects, but only Cauchy morphisms. I believe that its localization

$$\mathbf{Cau}_m[\mathrm{Cauchy}^{-1}] \simeq \mathbf{LBord}_m[\mathrm{All}^{-1}]$$

is equivalent to a Stolz-Teichner-style globally hyperbolic Lorentzian bordism category, localized at all bordisms.

 \diamond Implication: Each $\mathfrak{A} \in \mathbf{AQFT}(\mathbf{Loc}_m, \bot)^W$ has an underlying representation of the Lorentzian bordisms that captures time evolution, but ignores spatial locality associated with non-Cauchy morphisms $f: M \to N$.

- \diamond Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces, all bordisms are cylinders $M \cong \mathbb{R} \times \Sigma$, but with rich geometry!
- \diamond Conjecture: Consider the subcategory $\mathbf{Cau}_m \subseteq \mathbf{Loc}_m$ given by all objects, but only Cauchy morphisms. I believe that its localization

$$\mathbf{Cau}_m[\mathrm{Cauchy}^{-1}] \simeq \mathbf{LBord}_m[\mathrm{All}^{-1}]$$

is equivalent to a Stolz-Teichner-style globally hyperbolic Lorentzian bordism category, localized at all bordisms.

- \diamond Implication: Each $\mathfrak{A} \in \mathbf{AQFT}(\mathbf{Loc}_m, \bot)^W$ has an underlying representation of the Lorentzian bordisms that captures time evolution, but ignores spatial locality associated with non-Cauchy morphisms $f: M \to N$.
- **Prop:** [Bunk/MacManus/AS; work in progress] The above holds true in spacetime dimension m=1. (... and quite likely also in general dimension)

- \diamond Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces, all bordisms are cylinders $M \cong \mathbb{R} \times \Sigma$, but with rich geometry!
- \diamond Conjecture: Consider the subcategory $\mathbf{Cau}_m \subseteq \mathbf{Loc}_m$ given by all objects, but only Cauchy morphisms. I believe that its localization

$$\mathbf{Cau}_m[\mathbf{Cauchy}^{-1}] \simeq \mathbf{LBord}_m[\mathbf{All}^{-1}]$$

is equivalent to a Stolz-Teichner-style globally hyperbolic Lorentzian bordism category, localized at all bordisms.

- \diamond Implication: Each $\mathfrak{A} \in \mathbf{AQFT}(\mathbf{Loc}_m, \bot)^W$ has an underlying representation of the Lorentzian bordisms that captures time evolution, but ignores spatial locality associated with non-Cauchy morphisms $f: M \to N$.
- **Prop:** [Bunk/MacManus/AS; work in progress] The above holds true in spacetime dimension m=1. (... and quite likely also in general dimension)
 - Open problem: What corresponds on the FFT side to the additional AQFT structure given by spatial locality? Is this related to extended field theories?

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\text{derived moduli stack of fields}\Big)_{\textcolor{red}{\hbar}} \,\in\, \mathbf{Alg}_{\text{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

In examples arising in physics, one typically has that

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\text{derived moduli stack of fields}\Big)_{\textcolor{red}{\hbar}} \,\in\, \mathbf{Alg}_{\text{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

 \diamond Well-known problem: Interesting derived stacks are almost never affine! Example: Classifying stack $\mathsf{B}G = [*/G]$ for G reductive affine group scheme $\leadsto \mathcal{O}(\mathsf{B}G) \simeq N^{\bullet}(G,\mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\text{derived moduli stack of fields}\Big)_{\hbar} \,\in\, \mathbf{Alg}_{\mathsf{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

- \diamond Well-known problem: Interesting derived stacks are almost never affine! Example: Classifying stack $\mathsf{B}G = [*/G]$ for G reductive affine group scheme $\leadsto \mathcal{O}(\mathsf{B}G) \simeq N^{\bullet}(G,\mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group
- ♦ Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

$$\mathfrak{A}(M) = \operatorname{QCoh}\Bigl(\operatorname{derived} \ \operatorname{moduli} \ \operatorname{stack} \ \operatorname{of} \ \operatorname{fields}\Bigr)_{\hbar} \in \mathbf{Alg}_{\mathbb{E}_{\mathbf{0}}}\bigl(\mathbf{dgCat}_{\mathbb{K}}\bigr)$$

In examples arising in physics, one typically has that

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\text{derived moduli stack of fields}\Big)_{\hbar} \,\in\, \mathbf{Alg}_{\mathrm{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

- \diamond Well-known problem: Interesting derived stacks are almost never affine! Example: Classifying stack $\mathsf{B}G = [*/G]$ for G reductive affine group scheme $\leadsto \mathcal{O}(\mathsf{B}G) \simeq N^{\bullet}(G,\mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group
- ♦ Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

$$\mathfrak{A}(M) \,=\, \mathrm{QCoh}\Big(\text{derived moduli stack of fields}\Big)_{\textcolor{red}{\hbar}} \,\in\, \mathbf{Alg}_{\textcolor{blue}{\mathbb{E}_0}}\big(\mathbf{dgCat}_{\textcolor{blue}{\mathbb{K}}}\big)$$

 $\begin{array}{l} \textbf{Def:} \ \ \mathsf{A} \ \ \mathsf{non\text{-}affine} \ \ \mathsf{AQFT} \ \ \mathsf{is} \ \mathsf{a} \ \ \mathbf{dgCat}_{\mathbb{K}}\text{-}\mathsf{valued} \ \ \mathsf{algebra} \ \ \mathfrak{A} \in \mathbf{Alg}_{\mathcal{P}_{(\mathbf{C},\perp)}}(\mathbf{dgCat}_{\mathbb{K}}) \\ \ \ \mathsf{over} \ \ \mathsf{the} \ \ \mathsf{factor} \ \ \mathcal{P}_{(\mathbf{C},\perp)} \ \ \mathsf{of} \ \ \mathsf{the} \ \ \mathsf{AQFT} \ \ \mathsf{operad} \ \ \mathcal{O}_{(\mathbf{C},\perp)} = \mathcal{P}_{(\mathbf{C},\perp)} \otimes \mathsf{uAs}. \end{array}$

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\text{derived moduli stack of fields}\Big)_{\hbar} \,\in\, \mathbf{Alg}_{\mathrm{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

- \diamond Well-known problem: Interesting derived stacks are almost never affine! Example: Classifying stack $\mathsf{B}G = [*/G]$ for G reductive affine group scheme $\leadsto \mathcal{O}(\mathsf{B}G) \simeq N^{\bullet}(G,\mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group
- ♦ Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

$$\mathfrak{A}(M) \,=\, \mathrm{QCoh}\Big(\mathsf{derived} \,\, \mathsf{moduli} \,\, \mathsf{stack} \,\, \mathsf{of} \,\, \mathsf{fields}\Big)_{\textcolor{red}{\hbar}} \,\in\, \mathbf{Alg}_{\textcolor{blue}{\mathbb{E}_0}}\big(\mathbf{dgCat}_{\textcolor{blue}{\mathbb{K}}}\big)$$

- $\begin{array}{l} \textbf{Def:} \ \ \mathsf{A} \ \ \mathsf{non\text{--affine AQFT}} \ \ \mathsf{is} \ \ \mathbf{dgCat}_{\mathbb{K}}\text{--valued algebra} \ \ \mathfrak{A} \in \mathbf{Alg}_{\mathcal{P}_{(\mathbf{C},\perp)}}(\mathbf{dgCat}_{\mathbb{K}}) \\ \text{over the factor} \ \ \mathcal{P}_{(\mathbf{C},\perp)} \ \ \mathsf{of the AQFT} \ \ \mathsf{operad} \ \ \mathcal{O}_{(\mathbf{C},\perp)} = \mathcal{P}_{(\mathbf{C},\perp)} \otimes \mathsf{uAs}. \end{array}$
 - \diamond The formal theory of such non-affine AQFTs was studied in a simpler 2-categorical context (replace $\mathbf{dgCat}_{\mathbb{K}}$ by $\mathbf{Pr}_{\mathbb{K}}$) by [Benini/Perin/AS/Woike].

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\text{derived moduli stack of fields}\Big)_{\hbar} \,\in\, \mathbf{Alg}_{\mathsf{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

- \diamond Well-known problem: Interesting derived stacks are almost never affine! Example: Classifying stack $\mathsf{B}G = [*/G]$ for G reductive affine group scheme $\leadsto \mathcal{O}(\mathsf{B}G) \simeq N^{\bullet}(G,\mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group
- ♦ Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

$$\mathfrak{A}(M) \,=\, \mathrm{QCoh}\Big(\text{derived moduli stack of fields}\Big)_{\textcolor{red}{\hbar}} \,\in\, \mathbf{Alg}_{\textcolor{blue}{\mathbb{E}_0}}\big(\mathbf{dgCat}_{\textcolor{blue}{\mathbb{K}}}\big)$$

- $\begin{array}{l} \textbf{Def:} \ \ \mathsf{A} \ \ \mathsf{non\text{-}affine} \ \ \mathsf{AQFT} \ \ \mathsf{is} \ \mathsf{a} \ \ \mathbf{dgCat}_{\mathbb{K}}\text{-}\mathsf{valued} \ \ \mathsf{algebra} \ \ \mathfrak{A} \in \mathbf{Alg}_{\mathcal{P}_{(\mathbf{C},\perp)}}(\mathbf{dgCat}_{\mathbb{K}}) \\ \ \ \mathsf{over} \ \ \mathsf{the} \ \ \mathsf{factor} \ \ \mathcal{P}_{(\mathbf{C},\perp)} \ \ \mathsf{of} \ \ \mathsf{the} \ \ \mathsf{AQFT} \ \ \mathsf{operad} \ \ \mathcal{O}_{(\mathbf{C},\perp)} = \mathcal{P}_{(\mathbf{C},\perp)} \otimes \mathsf{uAs}. \end{array}$
 - \diamond The formal theory of such non-affine AQFTs was studied in a simpler 2-categorical context (replace $\mathbf{dgCat}_{\mathbb{K}}$ by $\mathbf{Pr}_{\mathbb{K}}$) by [Benini/Perin/AS/Woike].
 - **Ex:** (i) Orbifold σ -models with fields $\phi: M \to [X/G_{\text{finite}}]$ [Benini/Perin/AS/Woike]

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\text{derived moduli stack of fields}\Big)_{\stackrel{\hbar}{\hbar}} \,\in\, \mathbf{Alg}_{\mathrm{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

- \diamond Well-known problem: Interesting derived stacks are almost never affine! Example: Classifying stack $\mathsf{B}G = [*/G]$ for G reductive affine group scheme $\leadsto \mathcal{O}(\mathsf{B}G) \simeq N^{\bullet}(G,\mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group
- ♦ Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

$$\mathfrak{A}(M) \,=\, \mathrm{QCoh}\Big(\text{derived moduli stack of fields}\Big)_{\textcolor{red}{\hbar}} \,\in\, \mathbf{Alg}_{\textcolor{blue}{\mathbb{E}_0}}\big(\mathbf{dgCat}_{\textcolor{blue}{\mathbb{K}}}\big)$$

- $\begin{array}{l} \textbf{Def:} \ \ A \ \ \text{non-affine AQFT} \ \ \text{is a} \ \ \mathbf{dgCat}_{\mathbb{K}}\text{-valued algebra} \ \ \mathfrak{A} \in Alg_{\mathcal{P}_{(\mathbf{C},\perp)}}(\mathbf{dgCat}_{\mathbb{K}}) \\ \text{over the factor} \ \ \mathcal{P}_{(\mathbf{C},\perp)} \ \ \text{of the AQFT operad} \ \ \mathcal{O}_{(\mathbf{C},\perp)} = \mathcal{P}_{(\mathbf{C},\perp)} \otimes \mathsf{uAs}. \end{array}$
 - $\diamond \ \, \text{The formal theory of such non-affine AQFTs was studied in a simpler} \\ \ \, 2\text{-categorical context (replace } \mathbf{dgCat}_{\mathbb{K}} \text{ by } \mathbf{Pr}_{\mathbb{K}}) \text{ by [Benini/Perin/AS/Woike]}. \\$
 - **Ex:** (i) Orbifold σ -models with fields $\phi: M \to [X/G_{\mathrm{finite}}]$ [Benini/Perin/AS/Woike]
 - (ii) Non-Abelian Yang-Mills theory on spatial lattices [Benini/Pridham/AS]