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embedding f : M — N s.t. f(M)C N is
open and causally convex

Def: Denote by Loc,, the category of m-dim.
spacetimes and spacetime embeddings.

o The following (tuples of) Loc,,-morphisms will be important:
(i) Cauchy morphism: f: M — N s.t. f(M) C N contains Cauchy surface of N

(ii) Causally disjoint pair: (f1 : M1 — N) L (f2: Ma — N) s.t.
In(fr(Mr)) N f2(M2) =0
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Some background on Lorentzian spacetimes

© Spacetime := oriented and time-oriented time,4
globally hyperbolic Lorentzian manifold NV N

© Spacetime embedding := orientation and

time-orientation preserving isometric

embedding f : M — N s.t. f(M)C N is

open and causally convex @
Def: Denote by Loc,, the category of m-dim.

spacetimes and spacetime embeddings.

o The following (tuples of) Loc,,-morphisms will be important:
(i) Cauchy morphism: f: M — N s.t. f(M) C N contains Cauchy surface of N
(i) Causally disjoint pair: (fi : M1 — N) L (f2: M2 — N) s.t.
In(fi(M1)) N f2a(M2) =0
(iii) Time-ordered tuple: f = (f1,...,fn) : M = (M,...,M,) = N s.t.
TH(F(M)) O f3(My) = 0, for all i < j
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Some background on Lorentzian spacetimes

© Spacetime := oriented and time-oriented time,4
globally hyperbolic Lorentzian manifold NV N

© Spacetime embedding := orientation and

time-orientation preserving isometric

embedding f : M — N s.t. f(M)C Nis p

open and causally convex @
Def: Denote by Loc,, the category of m-dim.

spacetimes and spacetime embeddings.

o The following (tuples of) Loc,,-morphisms will be important:

(i) Cauchy morphism: f: M — N s.t. f(M) C N contains Cauchy surface of N
(i) Causally disjoint pair: (fi : M1 — N) L (f2: M2 — N) s.t.
In(fi(M1)) N f2a(M2) =0
(iii) Time-ordered tuple: f = (f1,...,fn) : M = (M1,...,M,) = N st.
T (fi(My)) 0 f(M;) =, for all i < j
(iv) Time-orderable tuple: f: M — N s.t. there exists p € X,, (time-ordering
permutation) with fp = (fp1),- -+, fon)) : Mp — N time-ordered
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What's a QFT on Lorentzian spacetimes?

¢ Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one
should study the following algebraic structure (for T = SM (oo-)category)
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¢ Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one
should study the following algebraic structure (for T = SM (oo-)category)

N
. AQFT | A(N) € Alg a(T)

I L4

quantum observables in N
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What's a QFT on Lorentzian spacetimes?

¢ Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one
should study the following algebraic structure (for T = SM (oo-)category)

N
. AQFT A(N) € Alg a(T)

r r

quantum observables in N

(ém(Mi) — AN)

composition of causally independent subsystems

that satisfies the (homotopy) time-slice axiom

N
AM) =5 A(N)

defines a concept of time evolution

o This is governed by the AQFT operad [Benini/AS/Woike, Benini/Carmona/AS]
O(Locm,L)[CaUCh}’_l}OO ~ (P(Locm,i) ® uAS) [Cauchy ~*]*°

Alexander Schenkel QFTs on Lorentzian manifolds Oxford 2023 3 /9



Classification in low dimensions (for target T = SM 1-category)

Prop: [Benini/AS/Woike] Given orthogonal category (C, L) and W C Mor C, then
Owc, HLW ™ =~ Ocw-110.(1))

where L : C — C[W 1] is localization of underlying category.
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Prop: [Benini/AS/Woike] Given orthogonal category (C, L) and W C Mor C, then
Oc.yW™ = Oew-1L.1) -
where L : C — C[W 1] is localization of underlying category.

¢ In low dimensions, these localizations can be determined explicitly. E.g.

(i) 1-dim. AQFT 2 on Loc; <= [Benini/Carmona/AS]

® Q A(]) = algebra with time evolution

= quantum mechanics
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Classification in low dimensions (for target T = SM 1-category)

Prop: [Benini/AS/Woike] Given orthogonal category (C, L) and W C Mor C, then
Oc.yW™ = Oew-1L.1) -
where L : C — C[W 1] is localization of underlying category.

¢ In low dimensions, these localizations can be determined explicitly. E.g.

(i) 1-dim. AQFT 2 on Loc; <= [Benini/Carmona/AS]

® Q A(]) = algebra with time evolution

= quantum mechanics

(i) 2-dim. conformal AQFT 2 on CLocy <= [Benini/Giorgetti/AS]

Emb(>, Ej )
—_—

b )? () A@) ) vine?
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Classification in low dimensions (for target T = SM 1-category)

Prop: [Benini/AS/Woike] Given orthogonal category (C, L) and W C Mor C, then
Owc, HLW ™ =~ Ocw-110.(1))
where L : C — C[W 1] is localization of underlying category.
¢ In low dimensions, these localizations can be determined explicitly. E.g.
(i) 1-dim. AQFT 2 on Loc; <= [Benini/Carmona/AS]
R Q A(]) = algebra with time evolution
= quantum mechanics

(i) 2-dim. conformal AQFT 2 on CLocy <= [Benini/Giorgetti/AS]

Emb($,[0])
Emb(R)?2 QQ[((}) &

A1) DD13(§1>2

© Open problem: Higher dimensions?
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Strictifying the time-slice axiom (for T = Chy with char K = 0)

o There are two (i.g. different) model categories for Chg-valued AQFTs:

(i) Strict time-slice axiom (projective model structure)

AQFT(C, )" = Algo(c[wq],L*u))(ChK)
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o There are two (i.g. different) model categories for Chg-valued AQFTs:

(i) Strict time-slice axiom (projective model structure)
W o—
AQFT(C, )" == Algo_ ,  (Chy)
(i) Homotopy time-slice axiom (left Bousfield localization a la [Carmona])

AQFT(C, L)hOW = Alg@(c.L)[""”']”‘ (ChK) = ﬁﬁAngc,L) (ChK)
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Strictifying the time-slice axiom (for T = Chy with char K = 0)
o There are two (i.g. different) model categories for Chg-valued AQFTs:
(i) Strict time-slice axiom (projective model structure)
W o—
AQFT(C,1)" := Algo .  (Chs)

(i) Homotopy time-slice axiom (left Bousfield localization a la [Carmona])

AQFT(C, L)hOW = Alg@(c.L)[""”']”‘ (ChK) = ﬁﬁAngc,L) (ChK)

Thm: [Benini/Carmona/AS] The localization functor L : (C, L) — (C[W 1], L.(1))
defines a Quillen adjunction

L, : AQFT(C, L)W — AQFT(C, L)V : L*

If L is a reflective orthogonal localization, then this is a Quillen equivalence.
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Strictifying the time-slice axiom (for T = Chy with char K = 0)

o There are two (i.g. different) model categories for Chg-valued AQFTs:

(i) Strict time-slice axiom (projective model structure)

W Py—
AQFT(C, 1) = Algo(cﬂwmm)(ChK)
(i) Homotopy time-slice axiom (left Bousfield localization a la [Carmona])

AQFT(C, L)hOW = Alg@(c.L)[""”']”‘ (ChK) = ﬁvAVAlgO(c,J_) (ChK)

Thm: [Benini/Carmona/AS] The localization functor L : (C, L) — (C[W 1], L.(1))
defines a Quillen adjunction

L, : AQFT(C, L)W — AQFT(C, L)V : L*

If L is a reflective orthogonal localization, then this is a Quillen equivalence.

= Strictification theorems for the homotopy time-slice axiom for AQFTs on
Locy, CLocy and Haag-Kastler-type Loc,, /M.
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Strictifying the time-slice axiom (for T = Chy with char K = 0)

o There are two (i.g. different) model categories for Chg-valued AQFTs:

(i) Strict time-slice axiom (projective model structure)

AQFT(C, )" = Algo(c[wq],L*u))(ChK)

(i) Homotopy time-slice axiom (left Bousfield localization a la [Carmona])
hoW
AQFT(C, 1) = Algo w1~ (Chx) ~ L5 Algo | (Chx)

Thm: [Benini/Carmona/AS] The localization functor L : (C, L) — (C[W 1], L.(1))
defines a Quillen adjunction

Li : AQFT(C, L)W —— AQFT(C, )V : L*

If L is a reflective orthogonal localization, then this is a Quillen equivalence.

= Strictification theorems for the homotopy time-slice axiom for AQFTs on
Locy, CLocy and Haag-Kastler-type Loc,, /M.

Rem: Very different behavior to topological QFTs (via locally constant factorization
algebras on R™) «w E,,-algebras [Lurie, Ayala/Francis]
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Construction of free (non-interacting) QFTs on Loc,,
o Input data: A natural collection {F (M), Qrr,wn fareroe,, of free BV

theories [Costello/Gwilliam], i.e. (F(M),Qnr) is a complex of differential
operators and wyy is a (—1)-shifted symplectic structure.
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Construction of free (non-interacting) QFTs on Loc,,

o Input data: A natural collection {F (M), Qrr,wn fareroe,, of free BV
theories [Costello/Gwilliam], i.e. (F(M),Qnr) is a complex of differential
operators and wyy is a (—1)-shifted symplectic structure.

o Central hypothesis: Green-hyperbolic complexes, i.e. there exists
(pseudo-)natural family of retarded/advanced Green's homotopies

—1 .
{A}t( € [‘FK(M)“FJ;/(K) (M)] : 8A}t{ - IHCI}KQJVI compact

Alexander Schenkel QFTs on Lorentzian manifolds Oxford 2023 6 /9



Construction of free (non-interacting) QFTs on Loc,,

o Input data: A natural collection {F (M), Qrr,wn fareroe,, of free BV
theories [Costello/Gwilliam], i.e. (F(M),Qnr) is a complex of differential
operators and wyy is a (—1)-shifted symplectic structure.

o Central hypothesis: Green-hyperbolic complexes, i.e. there exists
(pseudo-)natural family of retarded/advanced Green's homotopies

—1 .
{A}t( € [‘FK(M)“FJ;/(K) (M)] : 8A}t{ - IHCI}KQJVI compact

Ex: Linear Yang-Mills theory [Benini/Bruinsma/AS]

(-1) (0) (1) (2)
(M) —2— k(M) —2— k(M) —2— Q% (M)

[ 2] 2127

1 1
(M) — QJﬁ(m(M) 5d QJﬁ(K)(M) QJﬁ(K)(M)

N

0
Qﬁ,(m
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Construction of free (non-interacting) QFTs on Loc,,

o Input data: A natural collection {F (M), Qrr,wn fareroe,, of free BV
theories [Costello/Gwilliam], i.e. (F(M),Qnr) is a complex of differential
operators and wyy is a (—1)-shifted symplectic structure.

o Central hypothesis: Green-hyperbolic complexes, i.e. there exists
(pseudo-)natural family of retarded/advanced Green's homotopies

—1 .
{A}t( € [‘FK(M)“FJ;/(K) (M)] : 8A}t{ - IHCI}KQJVI compact

Ex: Linear Yang-Mills theory [Benini/Bruinsma/AS]

(-1) (0) (1) (2)
(M) —2— k(M) —2— k(M) —2— Q% (M)

[ 2] 2127

1 1 0
(M) —— QJA%(IO(M) sa QJ§<K>(M) P QJ%,(K)(M)

N

0
Qﬁ,(m

Thm: [Benini/Musante/AS] One can construct from such {F (M), Qr,wa FmeLoc,,
a Chg-valued AQFT 2 € AQFT(Loc,,, 1 )hoCauchy,
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Comparison to factorization algebras (a ia [costello/Guwilliam])

o Time-orderable prefactorization algebras on Loc,, [Benini/Perin/AS]:
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Comparison to factorization algebras (a ia [costello/Guwilliam])

o Time-orderable prefactorization algebras on Loc,, [Benini/Perin/AS]:

N

Iﬂ> F(N)eT

no algebra structure!!!
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Comparison to factorization algebras (a ia [costello/Guwilliam])

o Time-orderable prefactorization algebras on Loc,, [Benini/Perin/AS]:

N
N)eT
tPFA if(b )€
no algebra structure!!!
\ R500) — 5
$(M;) — F(N
l—) i=1

time-ordered products
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Comparison to factorization algebras (a ia [costello/Guwilliam])

o Time-orderable prefactorization algebras on Loc,, [Benini/Perin/AS]:

N
N)eT
tPFA iIY(b )€
no algebra structure!!!
\ R500) — 5
$(M;) — F(N
|_> i=1

time-ordered products

o With some Lorentzian geometry, one shows that there exists an operad
morphism @ : tProc,, — O(voc,,,1) to the AQFT operad.
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Comparison to factorization algebras (a ia [costello/Guwilliam])

o Time-orderable prefactorization algebras on Loc,, [Benini/Perin/AS]:

N
N)eT
tPFA iIY(b )€
no algebra structure!!!
\ R500) — 5
$(M;) — F(N
|_> i=1

time-ordered products

o With some Lorentzian geometry, one shows that there exists an operad
morphism @ : tProc,, — O(voc,,,1) to the AQFT operad.

Thm: [Benini/Perin/AS] For target T = cocomplete SM 1-category, we have an
equivalence of categories

D) : tPFASLaUChy,ﬂdd — AQFT(LOCm7J_)Cauchy,add . P
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Comparison to factorization algebras (a ia [costello/Guwilliam])

o Time-orderable prefactorization algebras on Loc,, [Benini/Perin/AS]:

N
PFA S(V)eT
t (N)
no algebra structure!!!
N n
@ F(M) — F(N)
l_) i=1

time-ordered products

o With some Lorentzian geometry, one shows that there exists an operad
morphism @ : tProc,, — O(voc,,,1) to the AQFT operad.

Thm: [Benini/Perin/AS] For target T = cocomplete SM 1-category, we have an
equivalence of categories

(I)g . tPFASLauChy’add — AQFT(LOCm7J_)Cauchy,add . P

© Open problem: Generalization to T = SM oo-category, in particular
T = Chg? In this case there are so far only example-based comparisons
[Gwilliam/Rejzner, Benini/Musante/AS].
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Comparison to functorial field theories (a la [Stolz/Teichner, ...])

o Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces,
all bordisms are cylinders M = R x X, but with rich geometry!
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Stolz/Teichner-style g.h. Lorentzian bordism double category LBord,,.
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Comparison to functorial field theories (a la [Stolz/Teichner, ...])

o Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces,
all bordisms are cylinders M = R x X, but with rich geometry!

o A Lorentzian FFT is a functor § : LBord,, — Alg,,(T) from a
Stolz/Teichner-style g.h. Lorentzian bordism double category LBord,,.

Thm: [Bunk/MacManus/AS] For target T = SM 1-category, there exists a functor

underlying FFT

AQFT(Loc,,, L)cuhy FFT(LBord,,)""

k /

AQFT(Cau,,, )*!
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Comparison to functorial field theories (a la [Stolz/Teichner, ...])

o Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces,
all bordisms are cylinders M = R x X, but with rich geometry!

o A Lorentzian FFT is a functor § : LBord,, — Alg,,(T) from a
Stolz/Teichner-style g.h. Lorentzian bordism double category LBord,,.

Thm: [Bunk/MacManus/AS] For target T = SM 1-category, there exists a functor

underlying FFT

AQFT(Loc,,, L)cuhy FFT(LBord,,)""

k /

AQFT(Cau,,, )*!

o In words: Every AQFT has an underlying FFT which captures time evolution,
but neglects spatial locality from non-Cauchy morphisms f: M — N.
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Comparison to functorial field theories (a la [Stolz/Teichner, ...])

o Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces,
all bordisms are cylinders M = R x X, but with rich geometry!

o A Lorentzian FFT is a functor § : LBord,, — Alg,,(T) from a
Stolz/Teichner-style g.h. Lorentzian bordism double category LBord,,.

Thm: [Bunk/MacManus/AS] For target T = SM 1-category, there exists a functor

underlying FFT

AQFT(Loc,,, L)cuhy FFT(LBord,,)""

k /

AQFT(Cau,,, 0)*"
o In words: Every AQFT has an underlying FFT which captures time evolution,
but neglects spatial locality from non-Cauchy morphisms f: M — N.

© Open problem: What corresponds to spatial locality on the FFT side?

Work in progress [MacManus]: g.h. Lorentzian bordism double operads
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Future direction: Non-affine AQFTs

¢ In examples arising in physics, one typically has that

A(M) = O(derived moduli stack of fields)r € Alg,x(Chg)
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Future direction: Non-affine AQFTs

¢ In examples arising in physics, one typically has that

A(M) = O(derived moduli stack of fields)r € Alg,x(Chg)
o Well-known problem: Interesting derived stacks are almost never affine!

Example: Classifying stack BG = [#/G] for G reductive affine group scheme
~ O(BG) = N*(G,K) ~ K = O(x) forgets the group
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A(M) = O(derived moduli stack of fields)r € Alg,x(Chg)

o Well-known problem: Interesting derived stacks are almost never affine!
Example: Classifying stack BG = [#/G] for G reductive affine group scheme

~ O(BG) = N*(G,K) ~ K = O(x) forgets the group
o Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

A(M) = QCoh(derived moduli stack of fields)} € Alg; (dgCaty)
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Future direction: Non-affine AQFTs

¢ In examples arising in physics, one typically has that

A(M) = O(derived moduli stack of fields)r € Alg,x(Chg)

o Well-known problem: Interesting derived stacks are almost never affine!
Example: Classifying stack BG = [#/G] for G reductive affine group scheme
~ O(BG) = N*(G,K) ~ K = O(x) forgets the group

o Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

A(M) = QCoh(derived moduli stack of fields)} € Alg; (dgCaty)

Def: A non-affine AQFT is a dgCaty-valued algebra 2 € Algp L)(dgCat]K)
over the factor P, 1) of the AQFT operad O (¢, 1) = P(c,1) ® uAs.
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Future direction: Non-affine AQFTs

¢ In examples arising in physics, one typically has that

A(M) = O(derived moduli stack of fields)r € Alg,x(Chg)

o Well-known problem: Interesting derived stacks are almost never affine!
Example: Classifying stack BG = [#/G] for G reductive affine group scheme
~ O(BG) = N*(G,K) ~ K = O(x) forgets the group

o Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

A(M) = QCoh(derived moduli stack of fields)} € Alg; (dgCaty)

Def: A non-affine AQFT is a dgCaty-valued algebra 2 € Algp L)(dgCat]K)
over the factor P, 1) of the AQFT operad O (¢, 1) = P(c,1) ® uAs.

¢ The formal theory of such non-affine AQFTs was studied in a simpler
2-categorical context (replace dgCaty by Pri) by [Benini/Perin/AS/Woike].
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Future direction: Non-affine AQFTs

¢ In examples arising in physics, one typically has that

A(M) = O(derived moduli stack of fields)r € Alg,x(Chg)

o Well-known problem: Interesting derived stacks are almost never affine!
Example: Classifying stack BG = [#/G] for G reductive affine group scheme
~ O(BG) = N*(G,K) ~ K = O(x) forgets the group

o Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

A(M) = QCoh(derived moduli stack of fields)} € Alg; (dgCaty)

Def: A non-affine AQFT is a dgCaty-valued algebra 2 € Algp L)(dgCat]K)
over the factor P, 1) of the AQFT operad O (¢, 1) = P(c,1) ® uAs.

¢ The formal theory of such non-affine AQFTs was studied in a simpler
2-categorical context (replace dgCaty by Pri) by [Benini/Perin/AS/Woike].

Ex: (i) Orbifold o-models with fields ¢ : M — [X/Ganite] [Benini/Perin/AS/Woike]
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Future direction: Non-affine AQFTs

¢ In examples arising in physics, one typically has that

A(M) = O(derived moduli stack of fields)h € Alg,x(Chg)

o Well-known problem: Interesting derived stacks are almost never affine!
Example: Classifying stack BG = [#/G] for G reductive affine group scheme
~ O(BG) = N*(G,K) ~ K = O(x) forgets the group

o Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

A(M) = QCoh(derived moduli stack of fields)} € Alg; (dgCaty)

Def: A non-affine AQFT is a dgCaty-valued algebra 2 € Algp L)(dgCat]K)
over the factor P, 1) of the AQFT operad O (¢, 1) = P(c,1) ® uAs.

¢ The formal theory of such non-affine AQFTs was studied in a simpler
2-categorical context (replace dgCaty by Pri) by [Benini/Perin/AS/Woike].
Ex: (i) Orbifold o-models with fields ¢ : M — [X/Ganite] [Benini/Perin/AS/Woike]
(ii) Non-Abelian Yang-Mills theory on spatial lattices [Benini/Pridham/AS]

Alexander Schenkel QFTs on Lorentzian manifolds Oxford 2023 9 /9



