Mapping spaces and automorphism groups of toric noncommutative spaces

Alexander Schenkel

Fakultät für Mathematik, Universität Regensburg.

Bayrischzell Workshop 2016 Quantum spacetime structures: Dualities and new geometries Bayrischzell, April 29 – May 3, 2016.

Based on ongoing joint work with Gwendolyn E. Barnes and Richard J. Szabo.

Background and motivation

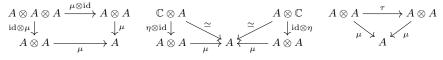
- Observation:
 - Deformed NC algebras A_{Θ} typically have <u>fewer</u> automorphisms than their underlying commutative algebras A
 - "NC symmetry breaking" / "quantum rigidity"
- ♦ Example:
 - Commutative plane: $\operatorname{Aut}(C^{\infty}(\mathbb{R}^{2n})) \simeq \{\text{diffeomorphisms of } \mathbb{R}^{2n}\}$
 - Moyal plane: $\operatorname{Aut}(C^{\infty}(\mathbb{R}^{2n})_{\Theta}) \simeq \{\text{symplectomorphisms of } (\mathbb{R}^{2n}, \omega = \Theta^{-1})\}$
- ⋄ Problem in NC gauge theory:

Let A_{Θ} be total space of a NC principal bundle. Then the gauge group $\operatorname{Gau}(A_{\Theta}) \subseteq \operatorname{Aut}(A_{\Theta})$ is typically too small [see e.g. Beggs, Majid].

- ♦ Goals of my talk:
 - 1.) Construct 'internalized' automorphism groups for toric NC spaces via sheaf theoretical techniques
 - 2.) Compare the Lie algebras of these groups to 'internalized' infinitesimal automorphisms (braided derivations)
 - 3.) Application to the gauge group in NC gauge theory

H-comodules and comodule algebras

- $\diamond \ H=\mathcal{O}(\mathbb{T}^n) \text{ is torus Hopf algebra; vector space basis } t_{\mathbf{m}}\text{``}=e^{i\,\mathbf{m}\,\phi}\text{''}\text{, }\mathbf{m}\in\mathbb{Z}^n$
- \diamond Cotriangular structure $R(t_{\mathbf{m}}\otimes t_{\mathbf{n}})=e^{i\,\mathbf{m}\,\Theta\,\mathbf{n}}$ with $n\times n$ -matrix Θ
- \diamond ${}^H_{\mathscr{M}}$ is category of left H-comodules $\rho^V:V\to H\otimes V\,,\ v\mapsto v_{(-1)}\otimes v_{(0)}$
- \diamond $^{H}\mathcal{M}$ is symmetric tensor category, i.e. we have commutativity constraints $\tau: \mathbf{V} \otimes W \to W \otimes \mathbf{V} \,, \ \mathbf{v} \otimes w \mapsto R(w_{(-1)} \otimes \mathbf{v}_{(-1)}) \, w_{(0)} \otimes \mathbf{v}_{(0)}$
- \diamond $^H\mathscr{A}$ is category of (finitely presented) algebra objects (A,μ,η) in $^H\mathscr{M}$



- Ex: 1.) $A_{\mathbb{S}_{\Theta}^{2N-1}} = \operatorname{Free}(x_1, \dots, x_N, x_1^*, \dots, x_N^*) / (\sum_a x_a^* x_a 1)$ with $x_a x_b = e^{i \mathbf{m}_b \Theta \mathbf{m}_a} x_b x_a$ and $x_a x_b^* = e^{-i \mathbf{m}_b \Theta \mathbf{m}_a} x_b^* x_a$
 - 2.) $A_{\mathbb{S}^{2N}_{\Theta}} = \operatorname{Free}(x_1, \dots, x_N, x_1^*, \dots, x_N^*, y) / (\sum_a x_a^* x_a + y^2 1)$ with commutation relations as above and $y x_a^{(*)} = x_a^{(*)} y$

Toric noncommutative spaces

- **Def:** Category of toric NC spaces ${}^H \mathcal{S} := ({}^H \mathcal{A})^{op}$.
 - Objects X_A are specified by objects A in ${}^H\mathscr{A}$
 - Morphisms $f: X_A \to X_B$ are specified by ${}^H \mathscr{A}$ -morphisms $f^*: B \to A$
- ! Going to the opposite category is useful for geometric intuition!

Lem: ${}^H \mathscr{S}$ has products $X_A \times X_B = X_{A \sqcup B}$ and pullbacks $X_A \times_{X_C} X_B = X_{A \sqcup_C B}$

$$\begin{array}{cccc} X_A \times_{X_C} X_B - \to X_B & \text{corresponds to} & C \xrightarrow{g^*} B \\ \downarrow & & \downarrow g & \downarrow \\ X_A \xrightarrow{f} X_C & & A - \to A \sqcup_C E \end{array}$$

$$\begin{array}{ccc}
C & \xrightarrow{g^*} & B \\
\downarrow^* & \downarrow & \downarrow \\
A & \rightarrow A \sqcup_C B
\end{array}$$

NB: The category ${}^H \mathscr{S}$ is too small for our purposes. It does not contain objects $X_B^{X_A}$ that describe the 'space of mappings' from X_A to X_B

[Technically $-\times X_A: {}^H\mathscr{S} \to {}^H\mathscr{S}$ does not have a right adjoint functor.]

- \diamond Way out: Enlarge the category ${}^H\mathscr{S}$ in a controlled way!
 - \rightsquigarrow generalized toric NC spaces $\stackrel{\frown}{=}$ sheaves on ${}^H\mathscr{S}$

${}^H\mathcal{S}$ -Zariski covering families

Def: An ${}^H \mathscr{S}$ -Zariski covering family is finite family of ${}^H \mathscr{S}$ -morphisms

$$\{f_i: X_{A_i} \longrightarrow X_A\}$$

such that

- (i) $A_i = A[s_i^{-1}]$ is localization of A w.r.t. H-coinvariant $s_i \in A$;
- (ii) $f_i^*: A \to A[s_i^{-1}]$ is the canonical ${}^H\mathscr{A}$ -morphism;
- (iii) there exists $a_i \in A$ such that $\sum_i a_i s_i = 1$.
- Ex: For $A_{\mathbb{S}^{2N}_\Theta}=\operatorname{Free}(x_1,\ldots,x_N,x_1^*,\ldots,x_N^*,y)/(\sum_a x_a^*\,x_a+y^2-\mathbb{1})$ choose $s_\pm=\frac{1}{2}(1\pm y)$ (localizes away from the South/North Pole)
- **Prop:** ${}^H \mathcal{S}$ -Zariski covering families are stable under pullbacks.

In particular,
$$X_{A[s_i^{-1}]} \times_{X_A} X_{A[s_j^{-1}]} \simeq X_{A[s_i^{-1}, s_j^{-1}]}.$$

 \diamond Loosely speaking: The overlap of two of our patches has 'function algebra' given by the localization $A[s_i^{-1}, s_j^{-1}]$ w.r.t. both elements s_i and s_j

Generalized toric NC spaces

- **Def:** Category of generalized toric NC spaces ${}^H\mathscr{G} := \mathrm{Sh}({}^H\mathscr{S}).$
 - Objects are functors $Y: {}^H\mathscr{S}^{\mathrm{op}} \to \mathsf{Set}$ satisfying sheaf condition

$$Y(X_A) \longrightarrow \prod_i Y(X_{A[s_i^{-1}]}) \Longrightarrow \prod_{i,j} Y(X_{A[s_i^{-1}, s_j^{-1}]})$$

- Morphisms are natural transformations $f: Y \to Y'$
- \diamond Toric NC spaces embed via (fully faithful) Yoneda embedding ${}^H\mathscr{S} o {}^H\mathscr{G}$
 - On objects X_A we have $X_A := \operatorname{Hom}_{H_{\mathscr{S}}}(-, X_A)$
 - On morphisms $f:X_A \to X_B$ we have $f:=\operatorname{Hom}_{H_{\mathscr{S}}}(-,f):\underline{X_A} \to \underline{X_B}$
- ? Interpretation:
 - $X_A(X_B) = \operatorname{Hom}_{H_{\mathscr{S}}}(X_B, X_A)$ described all possible ways how X_B can be mapped into the toric NC space X_A
 - Interpret $Y(X_B)$ as the set of all possible ways how X_B can be mapped into the generalized toric NC space Y (Grothendieck's "functor of points")
- ! Warning: Generalized toric NC spaces are **not** described by algebras!

Categorical properties of ${}^{H}\mathscr{G}$ / Mapping spaces

- The category of generalized toric NC spaces is very good (technically called Grothendieck topos). In particular:
 - $^{H}\mathscr{G}$ has all limits (e.g. fibred products) and colimits (e.g. quotient spaces)
 - $^{H}\mathscr{G}$ has exponential objects Z^{Y} ('spaces of mappings from Y to Z')
- \diamond Let's have a closer look at $X_B \frac{X_A}{}$ for two ordinary toric NC spaces
- The functor of points is

$$\underline{X_B}^{X_A}(X_C) = \operatorname{Hom}_{H_{\mathscr{S}}}(X_C \times X_A, X_B) = \operatorname{Hom}_{H_{\mathscr{A}}}(B, C \sqcup A)$$

i.e.
$$\{ \text{ maps } X_C \longrightarrow \underline{X_B}^{\underline{X_A}} \} \simeq \{ \text{ maps } X_C \times X_A \longrightarrow X_B \} \text{ (adjunction!)}$$

- Rem:
- Global points $\{*\} \longrightarrow X_B \xrightarrow{X_A}$ are precisely ${}^H \mathscr{S}$ -morphisms $X_A \to X_B$
 - Generalized points $X_C \longrightarrow X_B \xrightarrow{X_A}$ capture additional information
 - ! That's the key to our original problem to find a bigger automorphism group for toric NC spaces!

Toy example: Endomorphisms of a 2-dim. toric NC plane

- $\diamond \ \, \mathsf{Consider} \,\, A = \mathsf{Free}(x,y) \,\, \mathsf{with} \,\, x \, y = e^{i \,\Theta} \, y \, x$
- \diamond $^H\mathscr{A}\text{-morphism }\kappa:A\to A$ has to satisfy

$$\kappa(x) \, \kappa(y) = \kappa(x \, y) = e^{i \, \Theta} \, \kappa(y \, x) = e^{i \, \Theta} \, \kappa(y) \, \kappa(x)$$

- $\Rightarrow \operatorname{Hom}_{H_{\mathscr{S}}}(X_A, X_A) \simeq \{ \kappa : A \to A : \kappa(x) \in x \mathbb{C} \text{ and } \kappa(y) \in y \mathbb{C} \}$
 - \diamond Mapping space is better. For $C = \operatorname{Free}(z)$ with $\rho: z \mapsto t_{(-1,0)} \otimes z$

$$\underline{X_A}^{X_A}(X_C) \simeq \left\{ \kappa : A \to C \sqcup A \, : \, \kappa(x) \in \sum_k z^k \otimes x^{k+1} \, \mathbb{C} \text{ and } \kappa(y) \in y \, \mathbb{C} \right\}$$

and for $C = \operatorname{Free}(z)$ with $\rho: z \mapsto t_{(0,-1)} \otimes z$

$$\underline{X_A}^{\underline{X_A}}(X_C) \simeq \left\{\kappa: A \to C \sqcup A \,:\, \kappa(x) \in x \,\mathbb{C} \text{ and } \kappa(y) \in \sum_k z^k \otimes y^{k+1} \,\mathbb{C} \right\}$$

! Varying C allows us to capture generic polynomial mappings $A \to A$ Loosely speaking: Additional mappings are encoded in generalized points!

Automorphism group and its Lie algebra

 $\diamond \ \underline{X_A}^{\underline{X_A}} \ \text{is a monoid object in} \ ^H \mathscr{G}$

$$e: \{*\} \longrightarrow \underline{X_A}^{\underline{X_A}} \quad , \qquad \bullet: \underline{X_A}^{\underline{X_A}} \times \underline{X_A}^{\underline{X_A}} \longrightarrow \underline{X_A}^{\underline{X_A}}$$

Def: Automorphism group $\operatorname{Aut}(X_A)$ is subobject of invertibles in the monoid object $\underline{X_A}^{X_A}$.

Prop: $\operatorname{Aut}(X_A)$ is group object in ${}^H\mathscr{G}$ ("generalized toric NC Lie group")

 \diamond Tangent bundle: mapping "infinitesimal line" $D = X_{\operatorname{Free}(x)/(x^2)}$ to $\operatorname{Aut}(X_A)$

$$T\operatorname{Aut}(X_A) = \operatorname{Aut}(X_A)^D \xrightarrow{\pi} \operatorname{Aut}(X_A)$$

Prop: The pullback

$$T_{e}\operatorname{Aut}(X_{A}) - \to T\operatorname{Aut}(X_{A})$$

$$\downarrow \qquad \qquad \downarrow^{\pi}$$

$$\{*\} \xrightarrow{e} \operatorname{Aut}(X_{A})$$

produces Lie algebra object $T_e \operatorname{Aut}(X_A)$ in ${}^H \mathscr{G}$ (infinitesimal automorphisms).

What did we get?

- \diamond The abstract machinery produced an automorphism group and its Lie algebra for toric NC spaces X_A (both are objects in ${}^H\mathcal{G}$, i.e. sheaves).
- \diamond $\operatorname{Aut}(X_A)$ has no description in elementary terms (no Hopf algebra!), but $T_e\operatorname{Aut}(X_A)$ can be identified with the braided derivations of A.
- $\diamond \operatorname{der}(A)$ are linear maps $L:A \to A$ satisfying braided Leibniz rule

$$L(a a') = L(a) a' + R(a_{(-1)} \otimes L_{(-1)}) a_{(0)} L_{(0)}(a')$$

- $\diamond \ \operatorname{der}(A)$ is Lie algebra object in ${}^H_{}\mathscr{M}$
- \diamond How to compare with Lie algebra object $T_e \mathrm{Aut}(X_A)$ in ${}^H \mathscr{G}$??
- **Thm:** There exists fully faithful embedding $j: {}^H \mathscr{M} \to \operatorname{Mod}_C({}^H \mathscr{G})$ such that $j(\operatorname{der}(A)) \simeq T_e \operatorname{Aut}(X_A)$.
 - \diamond *Sketch*: j is given by $j(V)(X_A) = (A \otimes V)^{\mathrm{coH}}$. Proving fully faithfulness requires detailed understanding of ${}^H \mathscr{M}$, which we have for $H = \mathcal{O}(\mathbb{T}^n)$.

Application to NC gauge theory

- \diamond G group object in ${}^H\mathscr{S}$ (i.e. $G=X_Q$ with Q Hopf algebra) and $r:P\times G\to P$ right G-action in ${}^H\mathscr{S}$ (i.e. $P=X_A$ with Q-comod. alg. A).
- \diamond Quotient is coequalizer $P \times G \xrightarrow{r} P \longrightarrow P/G$ in ${}^H \mathscr{S}$ (exists!)

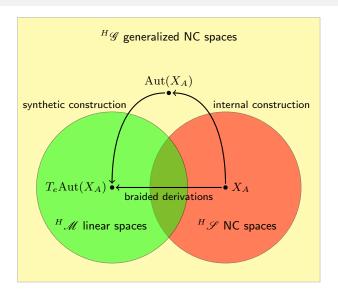
Def: $r: P \times G \rightarrow P$ is toric NC principal bundle over P/G if we have iso

- $\diamond \ \operatorname{Gau}(P)$ is subobject of $\operatorname{Aut}(P)$ preserving G-action and base space P/G
- ♦ Lie algebra $T_e \operatorname{Gau}(P)$ has elementary description in terms of $\operatorname{der}(A)$ compatible with Q-coaction and coinvariants $B = A^{\operatorname{co} Q}$ (notice $X_B = P/G$)

$$(L \otimes \mathrm{id}_Q) \delta^Q(a) = \delta^Q(L(a)) \ ,$$

$$L(b) = 0 \ .$$

Summary in one picture



 $Aut(X_A)$ has no elementary description (no Hopf algebras!)