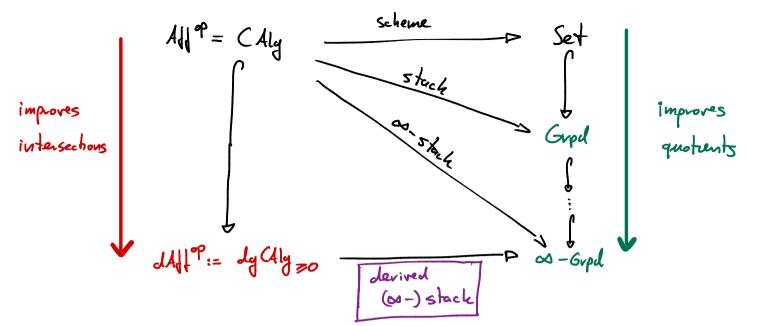
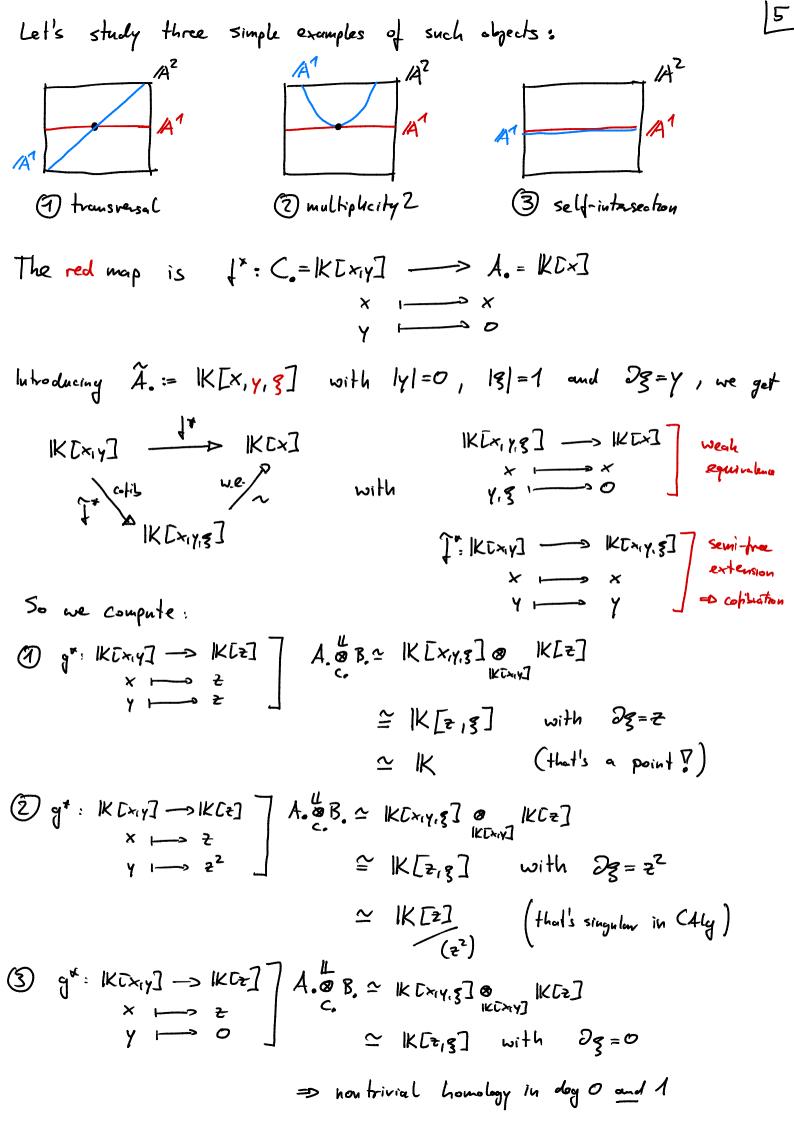
Highe structures and quartization
(Abrauda Schaubel, Mittingham
(Abrauda Schaubel, Mittingham
(4 loctures @ Göttingen, March 2023)
• Derived algebraic geometry (DAG) is a higher artegorical enhancement
of ordinary algebraic geometry that is useful for studying
(i) intersections of non-tree group actions
• The building blacks of algebraic geometry are affine schemes
(ii) quartients by non-free group actions
• The building blacks of algebraic geometry are affine schemes
Aff := (Alg ^Q (work over IK = field of clar O).
Given
$$A \in CAY$$
, write Speed $\in Aff$ for associated affine scheme.
• Tor some purposes (e.g. unpring group), the category Aff is not big enough,
so one has to inhoduce generalized non
Aff \leq Vanda Sh (Aff, Set)
uilding generalized press
are gets from glacing
there idea is to describe a space X
by specifying have all test spaces
Speed \in Aff map into it:
 $- \chi(A^{O}) = neet af points of X''$
 $- \chi(A^{2}) = neet af points in X'' ...$

The enhancements of DAG are best understood from this viewpoint:



What's new in DAG2

PTVV, CPTVV, Pridham, ...] (1) Shifted symplectic and Poisson structures The tangent and cotangent spaces of a derived stack XedSt are cochain complexes: $T_{x}X = \left(\dots \xrightarrow{d} \left(T_{x}X \right)^{-1} \xrightarrow{d} \left(T_{x}X \right)^{0} \xrightarrow{d} \left(T_{x}X \right)^{1} \xrightarrow{d} \dots \right) \in Ch$ mo room for symplectic and Poisson structures w/ coh. dogree n E # V Interesting examples: (1) dCrit (1:X -> A) carries (-1)-shifted symplectic structure MD BV formalism (ii) T*[X/G] cames O-shifted symplectic structure mD ordinary phase spaces, but with derived and stacky features (iii) Bg = [*/g] corries 1 and 2-shifted Poisson structures [Safronor] mD quosi Lie bialgebras and invariant tensors (Synig) &



$$L_{1k} = \Lambda_{1k}^{1} = O \qquad (as expected for point)$$

(2)
$$K\overline{L^{2}}$$
 is not confirment. We use the vesselection $K\overline{L^{2}}\overline{L^{2}} \xrightarrow{\sim} K\overline{L^{2}}$. [2]
We get for the Keller differentials
 $\mathcal{D}_{|KCM|}^{d} = \frac{|KLM|}{(2^{2})} \frac{d\pi}{(2^{2})} \xrightarrow{\simeq} |K| d\pi$ with module sharetre
given by $\pi \cdot d\pi = 0$.
That's not projective, hence hot dualizable, hence no vector fields.
On the other hand, the colongent complex
 $\mathbb{U}_{|KCM|} = \frac{|KLM|}{(2^{2})} \xrightarrow{\otimes} (|K[\pi, g]| d\pi \oplus ||K[\pi, g]| dg)$
 $\stackrel{(a)}{=} \left(\frac{|KLM|}{(2^{2})} \xrightarrow{\otimes} (|K[\pi, g]| d\pi \oplus ||K[\pi, g]| dg) \right)$
 $\stackrel{(a)}{=} \left(\frac{|KLM|}{(2^{2})} \xrightarrow{\otimes} (|K[\pi, g]| dg) \right)$
 $\stackrel{(a)}{=} \left(\frac{|KLM|}{(2^{2})} \xrightarrow{\otimes} (|K[\pi, g]| dg) \right)$
 $\stackrel{(a)}{=} \left(\frac{|KLM|}{(2^{2})} \xrightarrow{\otimes} (|K[\pi, g]| dg) \right)$
 $\stackrel{(b)}{=} \frac{|KLM|}{(2^{2})} \xrightarrow{\otimes} (|K[\pi, g]| dg)$
 $\stackrel{(b)}{=} \frac{|KLM|}{(2^{2})} \xrightarrow{\otimes} (|K[\pi, g]| dg)$
 $\stackrel{(b)}{=} \frac{|K[\pi, g]|}{(2^{2})} \xrightarrow{\otimes} (|K[\pi, g]| dg)$
 $\stackrel{(b)}{=} \frac{|K[\pi, g]|}{(2^{2})} \xrightarrow{\otimes} (|K[\pi, g]| dg)$
 $\stackrel{(c)}{=} \frac{|K[\pi, g]|}{(2^{2})} \xrightarrow{\otimes} (|K[\pi, g]| dg)$

Our sign conventions for chain cochain (double) complexes $(V, , 2, 5) \in Ch$ are that of anticommunity differentials $\partial 5 + 5\partial = 0$, which is compatible with the totalized Koszul signs (i.e. |v|=i-j for $v \in V_j^i$)

$$= \Sigma : V^{\bullet} \otimes W^{\bullet} \longrightarrow W^{\bullet} \otimes V^{\bullet}$$
$$V \otimes W \longmapsto (-1)^{|V||w|} \otimes V$$

Let's spell this out explicitly:

$$\omega$$
 is a family of forms $(\omega_{(i)} \in DR^{i}(A_{\cdot})_{i-p-n})_{i\geq p}$ that satisfy
 $\partial \omega_{(p)} = 0$ - homologically closed
 $d \omega_{(p)} + \partial \omega_{(p+1)} = 0$ - dR -closed up to ∂ -homology
 $d \omega_{(p+1)} + \partial \omega_{(p+2)} = 0$

The involved maps read explicitly as:

$$O^*: Sym_A T_A = [K L x_{1} \dots x_{n}, \partial_{x_{n}} \dots \partial_{x_{n}}] \longrightarrow A = [K L x_{1} \dots x_{n}]$$

$$x_{i} \longmapsto x_{i}$$

$$\partial_{x_{i}} \longmapsto o$$

$$A = [K L x_{n} \dots x_{n}]$$

As cofibrant replacement for O* we can take

$$\widetilde{O}^{*}: [K[x_{n}, \dots, x_{n}, \partial_{x_{n}}] \longrightarrow [K[x_{n}, \dots, \partial_{x_{n}}, \dots, \partial_{x_{n}}, \frac{g^{1}}{g^{1}} \dots, \frac{g^{n}}{g^{n}}] = \widetilde{A}.$$

$$\begin{array}{c} & & \\ &$$

This gives $O(dCnit(f)) \simeq \widetilde{A}_{0} \otimes A \cong \mathbb{K}[X_{1},...,X_{n},g^{1},...,g^{n}] \in dg(Hg_{20})$ $Sym_{A}T_{A} \qquad \text{with } \partial g^{1} = \partial_{x_{i}}f$

Derived critical loci come with canonical (-1)-shifted symplectic
structures, which are induced by the cononical symplectic structure on T*Spec A
and the theory of derived Lagrangian intersections (PTVV).
In our example:
$$\omega = (\omega_{10})_{PZZ}$$
 with
 $\omega_{1z} = \sum_{i=1}^{n} dx_i dg^i$, $\omega_{cp} = 0$ $\forall P>Z$.
Note: $d\omega_{c1} = 0$ by $d^2 = 0$ and
 $\sum_{i=1}^{n} dx_i dg^i = \sum_{i=1}^{n} dx_i d(g^i) = \sum_{i=1}^{n} dx_i d(g^i)$

$$=\sum_{i,j=1}^{n} \left(2x_i \partial_{x_j} \right) dx_i dx_j = 0$$

In the case where A. e dy Clyzo has a dealizable colongent complex ll A e d. dy Mod, one can also introduce a concept of n-shifted Poisson structures. For this one introduces the CD64 of shifted polyrectors
Pol(A., n) := II Sym (The Envir) e dg Chy and extends the Lie brocket on The to a Purz-algebra structure E...] on Pol(A., n) (called Schowten - Migenhus bracket).
Def: An n-shifted Poisson structure on A. e dy Chyzo is an element of oldgree -n-2
II e (F²Pol(A., n))_-n-2 = II Sym A. (The Envir)

that satisfies the Maurer-Cartan equation
$$\partial_{II} + \frac{1}{2} \left[\overline{II}_{I} \overline{II} \right] = 0$$

■ Let's spell this out explicitly:
T is a family of polymetrics
$$(\Pi_{(i)} \in Sym_{A_{i}}^{i}(\Pi_{A,D,H}))_{-H-2})_{i\geq 2}$$
 that subsidy
 $\Im_{\Pi(x)} = \bigcirc \frown homologically closed$
 $\Im_{\Pi(x)} + \int_{2}^{i} [\Pi_{(0)}, \Pi_{(0)}] = \bigcirc \frown]_{\partial coldi} up to 2-homology
 $\Im_{\Pi(x)} + \int_{2}^{i} [\Pi_{(0)}, \Pi_{(0)}] = \bigcirc \frown]_{\partial coldi} up to 2-homology
 $\Im_{\Pi(x)} + \int_{2}^{i} [\Pi_{(0)}, \Pi_{(0)}] = \bigcirc \frown higher]_{\partial coldi} homologies
:
:
I Theorem: (Melon), $(PTVV, Ridhan,...)$
The spear of n-shifted symplectic structures is breakly homology
equivalent to the spice of non-degenerate n-shifted Poisson structure.
:
Example: (Back to derived critical loci / BV formalism)
Recall $\bigcirc (dCrit(1)) \cong K[X_{1},...,X_{n-1}g^{n-1}] \in dg(Higgo
with $|x_{1}| = \bigcirc, (g^{i}| = 1, \Im_{g}^{i} = \Im_{g}f \ and (1)$ -shifted symplectic structure
 $\omega_{co} = \sum_{i=1}^{n} dx_{i} dg^{i}, \quad \omega_{(p)} = \bigcirc \forall p > 2$.
A corresponding shifted baset $\{X_{1}, g^{i}\} = \delta_{1}^{2}$ is called the
arbibrackt in the BV formalism.$$$$

3. Derived quotient stacks

■ All of this machinery for derived affines can be extended to
derived Artin study, and in particular to derived quarteent study.
■ Del: (Special case, but sufficient for us)
Let Y:= SpecB e diff be a derived affine scheme with an
action v: Y×6 → Y of a smooth affine group scheme
G= SpecH ∈ Grp(Aff). The corresponding derived quarteent stude
is defined as the co-columit

$$[Y/G] := co-columit$$

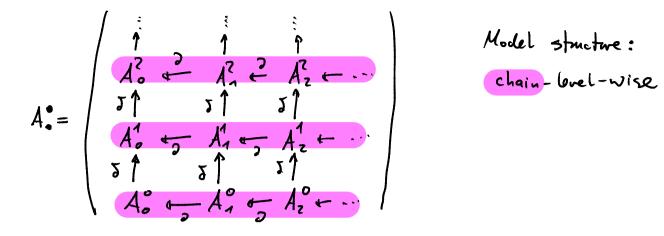
 $[Y/G] := co-columit$
 $[Y/G] := co-columit$
 $(Y \xrightarrow{d} Y×G \xrightarrow{d} Y×G^2 \cdots) \in clSt$
with the face and degenency maps given by
 $d_1: Y×6^n \longrightarrow Y×G^{n-1}$
 $(Y:g_1...,g_n) \mapsto ((Y:g_1,g_1,g_1,g_1,g_1,g_1,g_1,g_1))$ for $i=1,...,n-1$
 $(Y:g_1...,g_{n-1})$ for $i=n$
 $S_1: Y×G^n \longrightarrow Y×G^{n+1}$
 $(Y:g_1...,g_{n-1})$ for $i=0$
 $(Y:g_1...,g_{n-1})$ for $i=0$

13

Geometric structures that can be pulled back along general dAH - morphisms J: Spec A. → Spec B. , e.g. Junctions, forms, bundles, etc., can be extended easily to derived stacks. The idea is to use the functor of points: E.g.: (h ∈ O(X)) ⇐ (compatible family of hf ∈ A., YJ: Spec A. → X) E

Since the force and degeneracy maps are Etale, functions, forms, polyrectors, Poisson structures, quantizations, etc., of [Y/6] can be defined as compatible formilies of degree-wise structures on (*).

Punchline: A geometric structure on a devived quotent stack decomposes into a family of algebraic structures on "stachy devived affines". ■ <u>Def</u>: The category of <u>stucky</u> derived affines Stalfff := (DGdg Cdly ≥0)^{op} Is the opposite category of chain cochain CD6As concentrated in positive homological and cohomological degrees:



- Shifted symplectic and Poisson structures are defined similarly to the case of ddff, but note that there is now an additional grading: torm $DR^{\circ}(A^{\circ})$ shacky weight $Pol(A^{\circ})$ shacky $DR^{\circ}(A^{\circ})$ derived $Pol(A^{\circ})$ a derived
- Example: ((E-algebras) Given B. ∈ dg(Algzo with Lie algebra action g: g→ Der(B.), we can form the Chevalley-Eilenbarg CD64 (E^{*}(g, B.) = (Sym g^V^{C-11}) ⊗ B. ∈ D6dg(Alg^{ZO}. This is generated by be B. of bidogree (⁰_{1kl}) and a busis ⊕^aeg^V, which has bidogree (¹₀). The differentials read as Db = ∂gb , Db = ⊕^ag(ta)(b) D⊕^a = 0 , J⊕^a = -½ t^a_{Le} ⊕^b⊕^c The formal Lie algebra quotent is defined by [Spec B./g] = Spec CE^{*}(g, B.) ∈ StdAff.

■ Example: (Derived critical losi / BV formation for quotient stacles)
Let
$$f: [ZX/G] \longrightarrow A^{-1}$$
 be a dimetric on an ordinary quotient stack
 $[ZX/G] = [Zyee A/Syee H]$. One can prove (see Barri, Shawer, AS) Hand
 $dCrit(1) \cong [Z/G]$ is derived quotient clock, where
 $O(Z)_{0} = Sym_{A}(T_{A, C+D} \oplus (A \oplus g_{C+D})) \in dg(Adgeo technological
with differential $Da=0$, $DV = i_{V}(ald)$; $D = -i_{g(1)}(X)$ to have
 $D(Z)_{0} = Sym_{A}(T_{A, C+D} \oplus (A \oplus g_{C+D})) \in dg(Adgeo technological
with differential $Da=0$, $DV = i_{V}(ald)$; $D = -i_{g(1)}(X)$ to have
 $[Z^{-}g_{1}] \stackrel{e}{=} [Z_{2}G_{g,0}g_{1}] \stackrel{e}{=} \cdots$
one can each out an explicit decription of the (-1)-shilted sympletic
structure on $dCrit(f)$, which is supplicial degree O shocks with
 $D(c_{0}) = d(X_{1}) = -X_{1} + do^{-}$
 $D(Z) = P'dri in conductos
 $DC = P'dri in conductos$
 $DC = D^{-}(Shifted Poisson structures on BG)$
For $BG = [Z^{+}(G], we have take resolution
 $[Z^{+}g_{1}] \stackrel{e}{=} [G_{g,0}g_{1}] \stackrel{e}{=} \cdots$
Hund starts with the usual CE-algebra $O(C^{-}g_{1}Z) = CE'(g_{1}K)$.
From degree counting, one sees that there can only be non-hived
 $1-shifted$ and $2-shifted$ Poisson structure on $D(Z^{-}g_{1}Z)$.
Choosing a basis $Z \oplus c_{0}^{+}Z$, they read as follows:$$$$

The conversal O-shifted Poisson structure on
$$T^*[Y/G]$$
 defines [19]
on Tot $CE^*(g, O(p^{-1}(o)),)$ the Poisson brashet $\overline{5}, \overline{5}^*$ given by
 $\overline{5}q_1q^3 \overline{5}^* O$, $\overline{5}v_1q \overline{5}^* v(q)$, $\overline{5}v_1v^3 \overline{5}^* = \overline{5}v_1v^3$, $\overline{5}t_{-1} \overline{5}^* \overline{5}^* = -\overline{5}q^4$
 $\overline{5}q_1q^3 \overline{5}^* O$, $\overline{5}v_1q \overline{5}^* v(q)$, $\overline{5}v_1v^3 \overline{5}^* = \overline{5}v_1v^3$, $\overline{5}t_{-1} \overline{5}^* \overline{5}^*$

Global quantization:
(X & dSt with
h-shifted Poisson structure II)
Peus: For X=Spec A. derived altine, ead affine quantization gives
a global one by taking dy-modules:

$$A_{oth} \in Alg(Ch) \longmapsto A_{oth} dy Mod \in Alg_{En}(dg(at))$$

Theorem:

The only explicit results I am aware of are:

(1) X = Spec (SymVo) with constant coefficient (nz0)-shifted Poisson structure mp Weyl n-algebras (Markarian) 20

- Example: (BV quantization, simplest cose)
 Recall: Given f: Spec |K[x₁,...,x_n] → A¹, then
 d(x_it (d)) = Spec |K[x₁,...,x_n] → A¹, then
 d(x_it (d)) = Spec |K[x₁,...,x_n] = 1, with |x_i|=0, |qⁱ|=1, Qⁱ=2x_if.
 The communical (-1) -shifted Poisson structure is II(z) = 2/2, Q_i, Q_ji, II(p)=0 ∀p>2.
 => (-1) -shifted Poisson browset:

 qx_i, q³] = 51⁸, ξx₁, x₃] = ξⁱ₁g³] = 0

 An |E₀-quatization of this P₀-algebra is given by

 A₀t_i = (|K[x₁,...,x_n]q¹,...,qⁿ] D(th)], Q_t = 0 + th A_{15V}) with A_{15V} = ^{2/2}₁₌₁ Q_{xi}, 2gⁱ
 BV Laplacian

The shifted Poisson braset is reconstructed from violation of 25 being a derivation:

$$\partial_t (a \cdot b) = (\partial_t a) b + (-1)^{|a|} (\partial_t b) + t \xi a, b \xi \quad \forall a, b \in A_{at}$$

Strategy for constructing a global prantization of deviced quarkant stocks

$$X = [Y/G] = [Spec B./Spec H] along (n \ge 0) - shifted Poisson structures:$$

$$\frac{Step 1: Express data using etale resolution
([Y/g], \pi^{o}) = ([Y/g_{geg}], \pi^{o}) = \cdots$$
This gives a cosimplicial dragram of P_{n+n} - algebras
Tot CE'(g, 8.) \Longrightarrow Tot CE'(geg, B.@H) \rightrightarrows ...

$$\frac{Step 2: Construct compatible degree wise quartizations to E_{n+n} - algebras
Tot CE'(g, 8.) \rightrightarrows Tot CE'(geg, B.@H) \rightrightarrows ...
and pass oner to E_{n} -monoidal dy-categories of modules
 $(Tot CE'(g, B_{n})_{h} = Tot CE'(geg, B.@H)_{h} = \cdots$

$$\frac{Step 3: Detamine global quarkization by computing hometopy limit
 $Q Coh(EY/G]_{h} = holim @ e Alg_{E_{n}}(dg Cot)$

$$\frac{1}{Theorem.} (Benini/Pridhum / 45)$$$$$$

) Z1

For $T^*[X/6] \in JSt$ with X=Spec A smooth and G= Spec H reductive, global quantization of canonical O-shidled Poixon structure gives D-modules $Q(Gh(T^*[X/6])_{ti} \simeq D-Mod(ZX/6])$.

This can be spelled out very explicitly: