Homotopical algebraic quantum field theory

Alexander Schenkel

School of Mathematical Sciences, University of Nottingham

Kolloquium über Reine Mathematik, Universität Hamburg, 17.04.2018.

Based on joint works with Marco Benini and different subsets of { <u>Urs Schreiber</u>, <u>Richard J. Szabo</u>, <u>Lukas Woike</u>}

Outline

- 1. Background on AQFT
- 2. Operadic formulation
- 3. Homotopy theory of AQFTs
- 4. Summary and outlook

Background on AQFT

 Algebraic quantum field theory is an axiomatic approach to QFT on globally hyperbolic Lorentzian manifolds (= spacetimes)

- Algebraic quantum field theory is an axiomatic approach to QFT on globally hyperbolic Lorentzian manifolds (= spacetimes)
- A theory is described by a covariant functor $\mathfrak{A}:\mathbf{Loc}\to\mathbf{Alg}$

- Algebraic quantum field theory is an axiomatic approach to QFT on globally hyperbolic Lorentzian manifolds (= spacetimes)
- A theory is described by a covariant functor $\mathfrak{A}:\mathbf{Loc}\to\mathbf{Alg}$

subject to physically motivated axioms:

- Algebraic quantum field theory is an axiomatic approach to QFT on globally hyperbolic Lorentzian manifolds (= spacetimes)
- A theory is described by a covariant functor $\mathfrak{A}:\mathbf{Loc}\to\mathbf{Alg}$

subject to physically motivated axioms:

(i) Einstein Causality:

$$[\mathfrak{A}(M_1),\mathfrak{A}(M_2)] = \{0\}$$

- Algebraic quantum field theory is an axiomatic approach to QFT on globally hyperbolic Lorentzian manifolds (= spacetimes)
- A theory is described by a covariant functor $\mathfrak{A}:\mathbf{Loc}\to\mathbf{Alg}$

subject to physically motivated axioms:

(i) Einstein Causality:

$$[\mathfrak{A}(M_1), \mathfrak{A}(M_2)] = \{0\}$$

(ii) Time-Slice:

Cauchy morphism

$$\mathfrak{A}(M) \stackrel{\mathsf{iso}}{\longrightarrow} \mathfrak{A}(M')$$

- **Input data:** (describing the type of QFTs)
 - A triple (C, \bot, W) consisting of a category C with orthogonality relation $\bot \subseteq \operatorname{Mor} \mathbf{C}_{t} \times_{t} \operatorname{Mor} \mathbf{C}$ (symmetric & o-stable subset) and $W \subseteq \operatorname{Mor} \mathbf{C}$

- **Input data:** (describing the type of QFTs)
 - A triple (C, \bot, W) consisting of a category C with orthogonality relation $\bot \subseteq \operatorname{Mor} \mathbf{C}_{t} \times_{t} \operatorname{Mor} \mathbf{C}$ (symmetric & o-stable subset) and $W \subseteq \operatorname{Mor} \mathbf{C}$
 - A target category M (bicomplete closed symmetric monoidal)

- **Input data:** (describing the type of QFTs)
 - A triple (C, \bot, W) consisting of a category C with orthogonality relation $\bot \subseteq \operatorname{Mor} \mathbf{C}_{t} \times_{t} \operatorname{Mor} \mathbf{C}$ (symmetric & o-stable subset) and $W \subseteq \operatorname{Mor} \mathbf{C}$
 - A target category M (bicomplete closed symmetric monoidal)

Def: The category of M-valued AQFTs on (C, \bot, W) is the full subcategory $\operatorname{aft}(\mathbf{C}, \bot, W) \subseteq \operatorname{Mon}(\mathbf{M})^{\mathbf{C}}$ of functors $\mathfrak{A} : \mathbf{C} \to \operatorname{Mon}(\mathbf{M})$ satisfying

- **Input data:** (describing the type of QFTs)
 - A triple (C, \bot, W) consisting of a category C with orthogonality relation $\bot \subseteq \operatorname{Mor} \mathbf{C}_{t} \times_{t} \operatorname{Mor} \mathbf{C}$ (symmetric & o-stable subset) and $W \subseteq \operatorname{Mor} \mathbf{C}$
 - A target category M (bicomplete closed symmetric monoidal)
- **Def:** The category of M-valued AQFTs on (C, \bot, W) is the full subcategory $\operatorname{\mathbf{qft}}(\mathbf{C},\bot,W)\subset\operatorname{\mathbf{Mon}}(\mathbf{M})^\mathbf{C}$ of functors $\mathfrak{A}:\mathbf{C}\to\operatorname{\mathbf{Mon}}(\mathbf{M})$ satisfying
 - 1. \perp -commutativity: For all $(c_1 \xrightarrow{f_1} c \xleftarrow{f_2} c_2) \in \perp$

$$\mathfrak{A}(c_1) \otimes \mathfrak{A}(c_2) \xrightarrow{\mathfrak{A}(f_1) \otimes \mathfrak{A}(f_2)} \mathfrak{A}(c) \otimes \mathfrak{A}(c)
\mathfrak{A}(f_1) \otimes \mathfrak{A}(f_2) \downarrow \qquad \qquad \downarrow \mu_c^{\mathrm{op}}
\mathfrak{A}(c) \otimes \mathfrak{A}(c) \xrightarrow{\mu_c} \mathfrak{A}(c)$$

- **Input data:** (describing the type of QFTs)
 - A triple (C, \bot, W) consisting of a category C with orthogonality relation $\bot \subseteq \operatorname{Mor} \mathbf{C}_{t} \times_{t} \operatorname{Mor} \mathbf{C}$ (symmetric & o-stable subset) and $W \subseteq \operatorname{Mor} \mathbf{C}$
 - A target category M (bicomplete closed symmetric monoidal)
- **Def:** The category of M-valued AQFTs on (C, \bot, W) is the full subcategory $\operatorname{\mathbf{qft}}(\mathbf{C},\bot,W)\subset\operatorname{\mathbf{Mon}}(\mathbf{M})^\mathbf{C}$ of functors $\mathfrak{A}:\mathbf{C}\to\operatorname{\mathbf{Mon}}(\mathbf{M})$ satisfying
 - 1. \perp -commutativity: For all $(c_1 \xrightarrow{f_1} c \xleftarrow{f_2} c_2) \in \perp$

$$\mathfrak{A}(c_1) \otimes \mathfrak{A}(c_2) \xrightarrow{\mathfrak{A}(f_1) \otimes \mathfrak{A}(f_2)} \mathfrak{A}(c) \otimes \mathfrak{A}(c)
\mathfrak{A}(f_1) \otimes \mathfrak{A}(f_2) \downarrow \qquad \qquad \downarrow \mu_c^{\text{op}}
\mathfrak{A}(c) \otimes \mathfrak{A}(c) \xrightarrow{\mu_c} \mathfrak{A}(c)$$

2. W-constancy: For all $f \in W$, $\mathfrak{A}(f)$ is isomorphism

- **Input data:** (describing the type of QFTs)
 - A triple (C, \bot, W) consisting of a category C with orthogonality relation $\bot \subseteq \operatorname{Mor} \mathbf{C}_{t} \times_{t} \operatorname{Mor} \mathbf{C}$ (symmetric & o-stable subset) and $W \subseteq \operatorname{Mor} \mathbf{C}$
 - A target category M (bicomplete closed symmetric monoidal)
- **Def:** The category of M-valued AQFTs on (C, \bot, W) is the full subcategory $\operatorname{\mathbf{qft}}(\mathbf{C},\bot,W)\subset\operatorname{\mathbf{Mon}}(\mathbf{M})^\mathbf{C}$ of functors $\mathfrak{A}:\mathbf{C}\to\operatorname{\mathbf{Mon}}(\mathbf{M})$ satisfying
 - 1. \perp -commutativity: For all $(c_1 \xrightarrow{f_1} c \xleftarrow{f_2} c_2) \in \perp$

$$\begin{array}{ccc} \mathfrak{A}(c_1) \otimes \mathfrak{A}(c_2) & \xrightarrow{\mathfrak{A}(f_1) \otimes \mathfrak{A}(f_2)} & \mathfrak{A}(c) \otimes \mathfrak{A}(c) \\ \mathfrak{A}(f_1) \otimes \mathfrak{A}(f_2) \downarrow & & \downarrow \mu_c^{\text{op}} \\ \mathfrak{A}(c) \otimes \mathfrak{A}(c) & \xrightarrow{\mu_c} & \mathfrak{A}(c) \end{array}$$

2. W-constancy: For all $f \in W$, $\mathfrak{A}(f)$ is isomorphism

Prop: Localization $L: \mathbb{C} \to \mathbb{C}[W^{-1}]$ induces equivalence of categories

$$\mathbf{qft}(\mathbf{C}, \perp, W) \cong \mathbf{qft}(\mathbf{C}[W^{-1}], L_*(\perp), \emptyset)$$

- **Input data:** (describing the type of QFTs)
 - A triple (C, \bot, W) consisting of a category C with orthogonality relation $\bot \subseteq \operatorname{Mor} \mathbf{C}_{t} \times_{t} \operatorname{Mor} \mathbf{C}$ (symmetric & o-stable subset) and $W \subseteq \operatorname{Mor} \mathbf{C}$
 - A target category M (bicomplete closed symmetric monoidal)
- **Def:** The category of M-valued AQFTs on (C, \bot, W) is the full subcategory $\operatorname{\mathbf{qft}}(\mathbf{C},\bot,W)\subset\operatorname{\mathbf{Mon}}(\mathbf{M})^\mathbf{C}$ of functors $\mathfrak{A}:\mathbf{C}\to\operatorname{\mathbf{Mon}}(\mathbf{M})$ satisfying
 - 1. \perp -commutativity: For all $(c_1 \xrightarrow{f_1} c \xleftarrow{f_2} c_2) \in \perp$

$$\mathfrak{A}(c_1) \otimes \mathfrak{A}(c_2) \xrightarrow{\mathfrak{A}(f_1) \otimes \mathfrak{A}(f_2)} \mathfrak{A}(c) \otimes \mathfrak{A}(c) \\
\mathfrak{A}(f_1) \otimes \mathfrak{A}(f_2) \downarrow \qquad \qquad \downarrow \mu_c^{\text{op}} \\
\mathfrak{A}(c) \otimes \mathfrak{A}(c) \xrightarrow{\mu_c} \mathfrak{A}(c)$$

2. W-constancy: For all $f \in W$, $\mathfrak{A}(f)$ is isomorphism

Prop: Localization $L: \mathbb{C} \to \mathbb{C}[W^{-1}]$ induces equivalence of categories

$$\mathbf{qft}(\mathbf{C}, \perp, W) \cong \mathbf{qft}(\mathbf{C}[W^{-1}], L_*(\perp), \emptyset)$$

NB: The relevant categories are $\mathbf{QFT}(\mathbf{C}, \perp) := \mathbf{qft}(\mathbf{C}, \perp, \emptyset)$

- ⋄ Traditional AQFT à la Haag-Kastler:
 - $\mathbf{C} = \mathbf{Reg}_M$ the category of "nice" subsets $U \subseteq M$ in a <u>fixed</u> spacetime M
 - $(U_1 \subseteq V) \perp (U_2 \subseteq V)$ iff U_1 and U_2 causally disjoint
 - $(U \subseteq V) \in W$ iff U contains a Cauchy surface of V

- Traditional AQFT à la Haag-Kastler:
 - $\mathbf{C} = \mathbf{Reg}_M$ the category of "nice" subsets $U \subseteq M$ in a fixed spacetime M
 - $(U_1 \subseteq V) \perp (U_2 \subseteq V)$ iff U_1 and U_2 causally disjoint
 - $(U \subseteq V) \in W$ iff U contains a Cauchy surface of V
- Locally covariant QFT à la Brunetti-Fredenhagen-Verch:
 - C = Loc the category of all globally hyperbolic Lorentzian manifolds
 - $(f_1:M_1\to M)\perp (f_2:M_2\to M)$ iff $f_1(M_1)$ and $f_2(M_2)$ causally disjoint
 - $(f: M \to M') \in W$ iff f(M) contains a Cauchy surface of M'

- ⋄ Traditional AQFT à la Haag-Kastler:
 - $\mathbf{C} = \mathbf{Reg}_M$ the category of "nice" subsets $U \subseteq M$ in a fixed spacetime M
 - $(U_1 \subseteq V) \perp (U_2 \subseteq V)$ iff U_1 and U_2 causally disjoint
 - $(U \subseteq V) \in W$ iff U contains a Cauchy surface of V
- Locally covariant QFT à la Brunetti-Fredenhagen-Verch:
 - C = Loc the category of all globally hyperbolic Lorentzian manifolds
 - $(f_1:M_1\to M)\perp (f_2:M_2\to M)$ iff $f_1(M_1)$ and $f_2(M_2)$ causally disjoint
 - $(f: M \to M') \in W$ iff f(M) contains a Cauchy surface of M'
- Chiral conformal QFT:
 - $C = Int(\mathbb{S}^1)$ the category of open intervals $I \subset \mathbb{S}^1$ in the circle
 - $(I_1 \subset I) \perp (I_2 \subset I)$ iff $I_1 \cap I_2 = \emptyset$
 - $W = \emptyset$, no W-constancy in this case

- ⋄ Traditional AQFT à la Haag-Kastler:
 - $\mathbf{C} = \mathbf{Reg}_M$ the category of "nice" subsets $U \subseteq M$ in a fixed spacetime M
 - $(U_1 \subseteq V) \perp (U_2 \subseteq V)$ iff U_1 and U_2 causally disjoint
 - $(U \subseteq V) \in W$ iff U contains a Cauchy surface of V
- Locally covariant QFT à la Brunetti-Fredenhagen-Verch:
 - C = Loc the category of all globally hyperbolic Lorentzian manifolds
 - $(f_1:M_1\to M)\perp (f_2:M_2\to M)$ iff $f_1(M_1)$ and $f_2(M_2)$ causally disjoint
 - $(f: M \to M') \in W$ iff f(M) contains a Cauchy surface of M'
- Chiral conformal QFT:
 - $\mathbf{C} = \mathbf{Int}(\mathbb{S}^1)$ the category of open intervals $I \subset \mathbb{S}^1$ in the circle
 - $(I_1 \subset I) \perp (I_2 \subset I)$ iff $I_1 \cap I_2 = \emptyset$
 - $W = \emptyset$, no W-constancy in this case

Remark: Traditionally, the target category is chosen as M = Vec. We will later also consider model categories in order to do homotopy theory (i.e. gauge theory).

Operadic formulation

$$\mathbf{QFT}(\mathbf{C},\bot) \ \cong \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)})$$

$$\mathbf{QFT}(\mathbf{C},\bot) \ \cong \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)})$$

- Why is that important and useful?
 - 1. Our previous definition of $\mathbf{QFT}(\mathbf{C}, \perp) \subseteq \mathbf{Mon}(\mathbf{M})^{\mathbf{C}}$ as a full subcategory is not very useful for universal constructions.

$$\mathbf{QFT}(\mathbf{C},\bot) \ \cong \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)})$$

- Why is that important and useful?
 - 1. Our previous definition of $\mathbf{QFT}(\mathbf{C}, \perp) \subseteq \mathbf{Mon}(\mathbf{M})^{\mathbf{C}}$ as a full subcategory is not very useful for universal constructions.
 - E.g. (i) Do (co)limits exist in $\mathbf{QFT}(\mathbf{C}, \perp)$?

$$\mathbf{QFT}(\mathbf{C},\bot) \ \cong \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)})$$

- Why is that important and useful?
 - 1. Our previous definition of $\mathbf{QFT}(\mathbf{C}, \perp) \subseteq \mathbf{Mon}(\mathbf{M})^{\mathbf{C}}$ as a full subcategory is not very useful for universal constructions.
 - E.g. (i) Do (co)limits exist in $\mathbf{QFT}(\mathbf{C}, \perp)$?
 - (ii) Do constructions similar to left Kan extensions $\mathsf{Lan}_F : \mathbf{Mon}(\mathbf{M})^\mathbf{C} \to \mathbf{Mon}(\mathbf{M})^\mathbf{D}$ exist for QFT categories?

 \diamond I will now show that for each orthogonal category (\mathbf{C}, \perp) there exists a colored operad $\mathcal{O}_{(\mathbf{C},\perp)}$ such that

$$\mathbf{QFT}(\mathbf{C},\bot) \ \cong \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)})$$

- Why is that important and useful?
 - 1. Our previous definition of $\mathbf{QFT}(\mathbf{C}, \perp) \subseteq \mathbf{Mon}(\mathbf{M})^{\mathbf{C}}$ as a full subcategory is not very useful for universal constructions.
 - E.g. (i) Do (co)limits exist in $\mathbf{QFT}(\mathbf{C}, \perp)$?
 - (ii) Do constructions similar to left Kan extensions $\mathsf{Lan}_F : \mathbf{Mon}(\mathbf{M})^\mathbf{C} \to \mathbf{Mon}(\mathbf{M})^\mathbf{D}$ exist for QFT categories?

Answer to (i) is positive and (ii) is done via operadic Kan extensions!

$$\mathbf{QFT}(\mathbf{C},\bot) \ \cong \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)})$$

- Why is that important and useful?
 - 1. Our previous definition of $\mathbf{QFT}(\mathbf{C}, \perp) \subseteq \mathbf{Mon}(\mathbf{M})^{\mathbf{C}}$ as a full subcategory is not very useful for universal constructions.
 - E.g. (i) Do (co)limits exist in $\mathbf{QFT}(\mathbf{C}, \perp)$?
 - (ii) Do constructions similar to left Kan extensions $\mathsf{Lan}_F : \mathbf{Mon}(\mathbf{M})^\mathbf{C} \to \mathbf{Mon}(\mathbf{M})^\mathbf{D}$ exist for QFT categories?
 - Answer to (i) is positive and (ii) is done via operadic Kan extensions!
 - 2. Given a target model category M (e.g. M = Ch(k)), can we do homotopy theory in $\mathbf{QFT}(\mathbf{C}, \perp)$? (That's important for studying gauge theories.)

 \diamond I will now show that for each orthogonal category (\mathbf{C}, \perp) there exists a colored operad $\mathcal{O}_{(\mathbf{C},\perp)}$ such that

$$\mathbf{QFT}(\mathbf{C}, \perp) \cong \mathbf{Alg}(\mathcal{O}_{(\mathbf{C}, \perp)})$$

- Why is that important and useful?
 - 1. Our previous definition of $\mathbf{QFT}(\mathbf{C}, \perp) \subseteq \mathbf{Mon}(\mathbf{M})^{\mathbf{C}}$ as a full subcategory is not very useful for universal constructions.
 - E.g. (i) Do (co)limits exist in $\mathbf{QFT}(\mathbf{C}, \perp)$?
 - (ii) Do constructions similar to left Kan extensions $\mathsf{Lan}_F : \mathbf{Mon}(\mathbf{M})^\mathbf{C} \to \mathbf{Mon}(\mathbf{M})^\mathbf{D}$ exist for QFT categories?
 - Answer to (i) is positive and (ii) is done via operadic Kan extensions!
 - 2. Given a target model category M (e.g. M = Ch(k)), can we do homotopy theory in $\mathbf{QFT}(\mathbf{C}, \perp)$? (That's important for studying gauge theories.)

Homotopy theory of operads and their algebras is well understood! [Berger, Moerdijk; Hinich; Spitzweck; ...]

Colored operads can be understood best by thinking of multicategories:

Colored operads can be understood best by thinking of multicategories:

Category (1 in / 1 out)

Colored operads can be understood best by thinking of multicategories:

Category (1 in / 1 out)

VS

Colored operad (n in / 1 out)

Colored operads can be understood best by thinking of multicategories:

Category (1 in / 1 out) Colored operad (n in / 1 out)VS

Colored operads can be understood best by thinking of multicategories:

Category (1 in / 1 out) Colored operad (n in / 1 out)VS

Def: Let \mathfrak{C} be a set. A \mathfrak{C} -colored operad \mathcal{O} in \mathbf{M} is given by the following data:

(i) for each $n \geq 0$ and $(\underline{c}, c') = ((c_1, \dots, c_n), c') \in \mathfrak{C}^{n+1}$, an object $\mathcal{O}(\frac{c'}{c}) \in \mathbf{M}$

Colored operads can be understood best by thinking of multicategories:

Category (1 in / 1 out) Colored operad (n in / 1 out)VS

- (i) for each $n \geq 0$ and $(\underline{c}, c') = ((c_1, \dots, c_n), c') \in \mathfrak{C}^{n+1}$, an object $\mathcal{O}(c') \in \mathbf{M}$
- (ii) operadic composition $\gamma: \mathcal{O}(\overset{c}{\underline{b}}) \otimes \overset{n}{\bigotimes} \mathcal{O}(\overset{b_i}{\underline{a}_i}) \longrightarrow \mathcal{O}((\overset{c}{\underline{a}_1}, ..., \overset{c}{\underline{a}_n}))$

Colored operads can be understood best by thinking of multicategories:

Category (1 in / 1 out) Colored operad (n in / 1 out)VS

- (i) for each $n \geq 0$ and $(\underline{c}, c') = ((c_1, \dots, c_n), c') \in \mathfrak{C}^{n+1}$, an object $\mathcal{O}(c') \in \mathbf{M}$
- (ii) operadic composition $\gamma: \mathcal{O}(\overset{c}{\underline{b}}) \otimes \bigotimes_{i=1}^n \mathcal{O}(\overset{b}{\underline{a_i}}) \longrightarrow \mathcal{O}((\underline{a_1},\overset{c}{\dots,\underline{a_n}}))$
- (iii) operadic unit $1:I\longrightarrow \mathcal{O}({}^{c}_{c})$

Colored operads can be understood best by thinking of multicategories:

Category (1 in / 1 out) Colored operad (n in / 1 out)VS

- (i) for each $n \geq 0$ and $(\underline{c}, c') = ((c_1, \dots, c_n), c') \in \mathfrak{C}^{n+1}$, an object $\mathcal{O}(c') \in \mathbf{M}$
- (ii) operadic composition $\gamma: \mathcal{O}(\frac{c}{b}) \otimes \bigotimes^n \mathcal{O}(\frac{b_i}{a_i}) \longrightarrow \mathcal{O}((\underline{a_1}, \dots, \underline{a_n}))$
- (iii) operadic unit $1:I\longrightarrow \mathcal{O}({}^{c}_{c})$
- (iv) for $\sigma \in \Sigma_n$, permutation right actions $\mathcal{O}(\sigma) : \mathcal{O}({}^{c'}_c) \longrightarrow \mathcal{O}({}^{c'}_{c\sigma})$

Colored operads can be understood best by thinking of multicategories:

Category (1 in / 1 out) Colored operad (n in / 1 out)VS

- (i) for each $n \geq 0$ and $(\underline{c}, c') = ((c_1, \dots, c_n), c') \in \mathfrak{C}^{n+1}$, an object $\mathcal{O}(c') \in \mathbf{M}$
- (ii) operadic composition $\gamma: \mathcal{O}(\overset{c}{\underline{b}}) \otimes \overset{n}{\bigotimes} \mathcal{O}(\overset{b_i}{\underline{a}_i}) \longrightarrow \mathcal{O}((\overset{c}{\underline{a}_1}, ..., \overset{c}{\underline{a}_n}))$
- (iii) operadic unit $1:I\longrightarrow \mathcal{O}({}^{c}_{c})$
- (iv) for $\sigma \in \Sigma_n$, permutation right actions $\mathcal{O}(\sigma) : \mathcal{O}({}^{c'}_c) \longrightarrow \mathcal{O}({}^{c'}_{c\sigma})$ satisfying equivariance, associativity and unitality axioms.

Some background on colored operads

Colored operads can be understood best by thinking of multicategories:

Category (1 in / 1 out) Colored operad (n in / 1 out)VS

Def: Let \mathfrak{C} be a set. A \mathfrak{C} -colored operad \mathcal{O} in \mathbf{M} is given by the following data:

- (i) for each $n \geq 0$ and $(\underline{c}, c') = ((c_1, \dots, c_n), c') \in \mathfrak{C}^{n+1}$, an object $\mathcal{O}(c') \in \mathbf{M}$
- (ii) operadic composition $\gamma: \mathcal{O}(\overset{c}{\underline{b}}) \otimes \overset{n}{\bigotimes} \mathcal{O}(\overset{b_i}{\underline{a}_i}) \longrightarrow \mathcal{O}((\overset{c}{\underline{a}_1}, ..., \overset{c}{\underline{a}_n}))$
- (iii) operadic unit $1:I\longrightarrow \mathcal{O}({}^{c}_{c})$
- (iv) for $\sigma \in \Sigma_n$, permutation right actions $\mathcal{O}(\sigma): \mathcal{O}({}^{c'}_c) \longrightarrow \mathcal{O}({}^{c'}_{c\sigma})$ satisfying equivariance, associativity and unitality axioms.

Ex: For $\mathfrak{C} = *$, we have the associative operad $\mathsf{As}(n) = \Sigma_n$.

♦ *O*-algebras can be understood best by thinking of representations:

♦ *O*-algebras can be understood best by thinking of representations:

Def: An *O*-algebra is given by the following data:

♦ *O*-algebras can be understood best by thinking of representations:

Def: An *O*-algebra is given by the following data:

(i) for each $c \in \mathfrak{C}$, an object $A_c \in \mathbf{M}$

♦ O-algebras can be understood best by thinking of representations:

Def: An *O*-algebra is given by the following data:

- (i) for each $c \in \mathfrak{C}$, an object $A_c \in \mathbf{M}$
- (ii) \mathcal{O} -action $\alpha: \mathcal{O}(\frac{c'}{c}) \otimes \bigotimes^n A_{c_i} \longrightarrow A_{c'}$

♦ O-algebras can be understood best by thinking of representations:

Def: An *O*-algebra is given by the following data:

- (i) for each $c \in \mathfrak{C}$, an object $A_c \in \mathbf{M}$
- (ii) \mathcal{O} -action $\alpha: \mathcal{O}(\frac{c'}{\underline{c}}) \otimes \bigotimes_{i=1}^n A_{c_i} \longrightarrow A_{c'}$

satisfying equivariance, left action and unitality axioms.

♦ O-algebras can be understood best by thinking of representations:

Def: An \mathcal{O} -algebra is given by the following data:

- (i) for each $c \in \mathfrak{C}$, an object $A_c \in \mathbf{M}$
- (ii) \mathcal{O} -action $\alpha: \mathcal{O}(\frac{c'}{\underline{c}}) \otimes \bigotimes_{i=1}^n A_{c_i} \longrightarrow A_{c'}$

satisfying equivariance, left action and unitality axioms.

Ex: An As-algebra A is an associative algebra: The operation $\sigma \in As(n) = \Sigma_n$ is represented by the multiplication $\alpha(\sigma)(a_1 \otimes \cdots \otimes a_n) = a_{\sigma^{-1}(1)} \cdots a_{\sigma^{-1}(n)}$.

O-algebras can be understood best by thinking of representations:

- **Def:** An *O*-algebra is given by the following data:
 - (i) for each $c \in \mathfrak{C}$, an object $A_c \in \mathbf{M}$
 - (ii) \mathcal{O} -action $\alpha: \mathcal{O}(\stackrel{c'}{\underline{c}}) \otimes \bigotimes^n A_{c_i} \longrightarrow A_{c'}$

satisfying equivariance, left action and unitality axioms.

- **Ex:** An As-algebra A is an associative algebra: The operation $\sigma \in As(n) = \Sigma_n$ is represented by the multiplication $\alpha(\sigma)(a_1 \otimes \cdots \otimes a_n) = a_{\sigma^{-1}(1)} \cdots a_{\sigma^{-1}(n)}$.
- **Thm:** For every colored operad morphism $(f, \phi) : (\mathfrak{C}, \mathcal{O}) \to (\mathfrak{D}, \mathcal{P})$, the pullback functor $(f,\phi)^*: \mathbf{Alg}(\mathcal{P}) \to \mathbf{Alg}(\mathcal{O})$ has a left adjoint, i.e.

$$(f,\phi)_!: \mathbf{Alg}(\mathcal{O}) \iff \mathbf{Alg}(\mathcal{P}): (f,\phi)^*$$

 \diamond For (\mathbf{C}, \perp) orthogonal category, define \mathbf{C}_0 -colored operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ by

Generators:

$$f \begin{vmatrix} c' \\ f \\ c \end{vmatrix}$$

$$1_c$$

Relations: Functoriality + Monoid + Compatibility + \perp -commutativity

 \diamond For (\mathbf{C}, \perp) orthogonal category, define \mathbf{C}_0 -colored operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ by

Generators:

$$f \begin{vmatrix} c' \\ f \\ c \end{vmatrix}$$

$$1_c \int_{\emptyset}^{c}$$

Relations: Functoriality + Monoid + Compatibility + \perp -commutativity

$$\begin{array}{cccc}
c & & & & c'' \\
 & & & & g \\
c & & & f \\
\end{array} = gf \int_{c}^{c''}$$

$$\begin{vmatrix} c'' \\ g \\ f \end{vmatrix} = g f \begin{vmatrix} c'' \\ c \end{vmatrix}$$

 \diamond For (\mathbf{C}, \perp) orthogonal category, define \mathbf{C}_0 -colored operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ by

Generators:

$$f \begin{vmatrix} c' \\ f \\ c \end{vmatrix}$$

$$1_c$$

Relations:

Functoriality + Monoid + Compatibility + \perp -commutativity

$$\mu_{c} \qquad \mu_{c} \qquad \mu_{c$$

 \diamond For (\mathbf{C}, \perp) orthogonal category, define \mathbf{C}_0 -colored operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ by

Generators:

$$f \begin{vmatrix} c' \\ f \\ c \end{vmatrix}$$

$$1_c \int_{\emptyset}^{c}$$

Relations:

Functoriality + Monoid + Compatibility + \perp -commutativity

$$\begin{vmatrix}
c' \\
f \\
1_c
\end{vmatrix} = 1_{c'} \begin{cases}
c \\
0
\end{cases}$$

$$\begin{pmatrix} c' \\ f \\ 1_c \\ \emptyset \end{pmatrix} = 1_{c'} \begin{pmatrix} c' \\ f \\ \psi_c \end{pmatrix} = \begin{pmatrix} c' \\ f \\ \psi_{c'} \end{pmatrix} \begin{pmatrix} c' \\ \psi_{c'} \\ f \end{pmatrix}$$

 \diamond For (\mathbf{C}, \perp) orthogonal category, define \mathbf{C}_0 -colored operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ by

Generators:

$$f \begin{vmatrix} c' \\ f \\ c \end{vmatrix}$$

$$1_c$$
 0

Relations: Functoriality + Monoid + Compatibility + \perp -commutativity

 \diamond For (\mathbf{C}, \perp) orthogonal category, define \mathbf{C}_0 -colored operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ by

Generators:

Relations: Functoriality + Monoid + Compatibility + \perp -commutativity

Thm: The assignment $(\mathbf{C}, \perp) \mapsto \mathcal{O}_{(\mathbf{C}, \perp)}$ is functorial on the category of orthogonal categories. There exists a natural isomorphism of categories

$$\mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)}) \cong \mathbf{QFT}(\mathbf{C},\perp)$$

Every orthogonal functor $F:(\mathbf{C},\perp) o (\mathbf{C}',\perp')$ defines operad map $\mathcal{O}_F: \mathcal{O}_{(\mathbf{C},\perp)} \to \mathcal{O}_{(\mathbf{C}',\perp')}$ and hence adjunction between algebra categories.

- Every orthogonal functor $F:(\mathbf{C},\perp)\to (\mathbf{C}',\perp')$ defines operad map $\mathcal{O}_F: \mathcal{O}_{(\mathbf{C},\perp)} \to \mathcal{O}_{(\mathbf{C}',\perp')}$ and hence adjunction between algebra categories.
- The following instances are interesting/useful for AQFT:

- Every orthogonal functor $F:(\mathbf{C},\perp) \to (\mathbf{C}',\perp')$ defines operad map $\mathcal{O}_F: \mathcal{O}_{(\mathbf{C},\perp)} \to \mathcal{O}_{(\mathbf{C}',\perp')}$ and hence adjunction between algebra categories.
- The following instances are interesting/useful for AQFT:

Abelianization

The orthogonal functor $id_{\mathbf{C}}: (\mathbf{C}, \emptyset) \to (\mathbf{C}, \bot)$ defines full reflective subcategory

 $\mathsf{Ab}: \mathbf{Mon}(\mathbf{M})^{\mathbf{C}} \Longrightarrow \mathbf{QFT}(\mathbf{C}, \bot) : \mathsf{U}$

- Every orthogonal functor $F:(\mathbf{C},\perp) \to (\mathbf{C}',\perp')$ defines operad map $\mathcal{O}_F: \mathcal{O}_{(\mathbf{C},\perp)} \to \mathcal{O}_{(\mathbf{C}',\perp')}$ and hence adjunction between algebra categories.
- The following instances are interesting/useful for AQFT:

Abelianization

The orthogonal functor $id_{\mathbf{C}}: (\mathbf{C}, \emptyset) \to (\mathbf{C}, \bot)$ defines full reflective subcategory

$$\mathsf{Ab}\,:\,\mathbf{Mon}(\mathbf{M})^{\mathbf{C}}\, \, {\buildrel \longleftarrow}\,\, \mathbf{QFT}(\mathbf{C},\bot)\,:\, \mathsf{U}$$

 \Rightarrow Structural result for the full subcategory $\mathbf{QFT}(\mathbf{C},\perp)\subseteq\mathbf{Mon}(\mathbf{M})^{\mathbf{C}}$

- Every orthogonal functor $F:(\mathbf{C},\perp) \to (\mathbf{C}',\perp')$ defines operad map $\mathcal{O}_F: \mathcal{O}_{(\mathbf{C},\perp)} \to \mathcal{O}_{(\mathbf{C}',\perp')}$ and hence adjunction between algebra categories.
- The following instances are interesting/useful for AQFT:

Time-Slicification

Localization functor $L: (\mathbf{Loc}, \perp) \to (\mathbf{Loc}[W^{-1}], L_*(\perp))$ defines full reflective subcategory

$$\mathsf{T}:\mathbf{QFT}(\mathbf{Loc},\perp) \ \Longleftrightarrow \ \mathbf{QFT}(\mathbf{Loc}[W^{-1}],L_*(\perp)):\mathsf{U}$$

- Every orthogonal functor $F:(\mathbf{C},\perp) \to (\mathbf{C}',\perp')$ defines operad map $\mathcal{O}_F: \mathcal{O}_{(\mathbf{C},\perp)} \to \mathcal{O}_{(\mathbf{C}',\perp')}$ and hence adjunction between algebra categories.
- The following instances are interesting/useful for AQFT:

Time-Slicification

Localization functor $L: (\mathbf{Loc}, \perp) \to (\mathbf{Loc}[W^{-1}], L_*(\perp))$ defines full reflective subcategory

$$\mathsf{T}: \mathbf{QFT}(\mathbf{Loc}, \perp) \iff \mathbf{QFT}(\mathbf{Loc}[W^{-1}], L_*(\perp)): \mathsf{U}$$

 \Rightarrow Time-slice axiom for $\mathfrak{A} \in \mathbf{QFT}(\mathbf{Loc}, \bot)$ is equivalent to $\eta_{\mathfrak{A}} : \mathfrak{A} \stackrel{\cong}{\longrightarrow} \mathsf{UTA}$

- Every orthogonal functor $F:(\mathbf{C},\perp)\to (\mathbf{C}',\perp')$ defines operad map $\mathcal{O}_F: \mathcal{O}_{(\mathbf{C},\perp)} \to \mathcal{O}_{(\mathbf{C}',\perp')}$ and hence adjunction between algebra categories.
- The following instances are interesting/useful for AQFT:

Local-to-Global/Descent

Let $\mathbf{Loc}_{\Diamond} \subseteq \mathbf{Loc}$ be full subcategory of spacetimes diffeomorphic to \mathbb{R}^m .

- Every orthogonal functor $F:(\mathbf{C},\perp) \to (\mathbf{C}',\perp')$ defines operad map $\mathcal{O}_F: \mathcal{O}_{(\mathbf{C},\perp)} \to \mathcal{O}_{(\mathbf{C}',\perp')}$ and hence adjunction between algebra categories.
- The following instances are interesting/useful for AQFT:

Local-to-Global/Descent

Let $\mathbf{Loc}_{\Diamond} \subseteq \mathbf{Loc}$ be full subcategory of spacetimes diffeomorphic to \mathbb{R}^m .

Embedding $j: (\mathbf{Loc}_{\diamondsuit}, j^*(\bot)) \to (\mathbf{Loc}, \bot)$ defines full **co**reflective subcategory

$$\mathsf{ext}\,:\,\mathbf{QFT}(\mathbf{Loc}_\diamondsuit,j^*(\bot))\,\, {\,\rightleftarrows\,}\hskip-.7pt\longrightarrow\,\, \mathbf{QFT}(\mathbf{Loc},\bot)\,:\,\mathsf{res}$$

- Every orthogonal functor $F: (\mathbf{C}, \perp) \to (\mathbf{C}', \perp')$ defines operad map $\mathcal{O}_F: \mathcal{O}_{(\mathbf{C},\perp)} \to \mathcal{O}_{(\mathbf{C}',\perp')}$ and hence adjunction between algebra categories.
- The following instances are interesting/useful for AQFT:

Local-to-Global/Descent

Let $\mathbf{Loc}_{\Diamond} \subseteq \mathbf{Loc}$ be full subcategory of spacetimes diffeomorphic to \mathbb{R}^m .

Embedding $j: (\mathbf{Loc}_{\diamondsuit}, j^*(\bot)) \to (\mathbf{Loc}, \bot)$ defines full **co**reflective subcategory

$$\mathsf{ext}\,:\,\mathbf{QFT}(\mathbf{Loc}_\diamondsuit,j^*(\bot))\,\, \Longrightarrow\,\,\mathbf{QFT}(\mathbf{Loc},\bot)\,:\,\mathsf{res}$$

 \Rightarrow A theory $\mathfrak{A} \in \mathbf{QFT}(\mathbf{Loc}, \perp)$ is determined locally on spacetimes diffeomorphic to \mathbb{R}^m if and only if $\epsilon_{\mathfrak{A}}:$ extres $\mathfrak{A} \stackrel{\cong}{\longrightarrow} \mathfrak{A}$

- Every orthogonal functor $F: (\mathbf{C}, \perp) \to (\mathbf{C}', \perp')$ defines operad map $\mathcal{O}_F: \mathcal{O}_{(\mathbf{C},\perp)} \to \mathcal{O}_{(\mathbf{C}',\perp')}$ and hence adjunction between algebra categories.
- The following instances are interesting/useful for AQFT:

Local-to-Global/Descent

Let $\mathbf{Loc}_{\Diamond} \subseteq \mathbf{Loc}$ be full subcategory of spacetimes diffeomorphic to \mathbb{R}^m .

Embedding $j: (\mathbf{Loc}_{\diamondsuit}, j^*(\bot)) \to (\mathbf{Loc}, \bot)$ defines full **co**reflective subcategory

$$\mathsf{ext}\,:\,\mathbf{QFT}(\mathbf{Loc}_\diamondsuit,j^*(\bot))\,\, \Longrightarrow\,\,\mathbf{QFT}(\mathbf{Loc},\bot)\,:\,\mathsf{res}$$

 \Rightarrow A theory $\mathfrak{A} \in \mathbf{QFT}(\mathbf{Loc}, \perp)$ is determined locally on spacetimes diffeomorphic to \mathbb{R}^m if and only if $\epsilon_{\mathfrak{A}}: \operatorname{ext} \operatorname{res} \mathfrak{A} \stackrel{\cong}{\longrightarrow} \mathfrak{A}$

Rem: ext : $\mathbf{QFT}(\mathbf{Loc}_{\Diamond}, j^*(\bot)) \to \mathbf{QFT}(\mathbf{Loc}, \bot)$ is operadic refinement of Fredenhagen's universal algebra construction

Homotopy theory of AQFTs

♦ Gauge theory = higher spaces of fields

"ordinary" field theory

gauge theory

♦ Gauge theory = higher spaces of fields

"ordinary" field theory

gauge theory

Technically, these are described by (higher) stacks

 $\mathsf{PSh}(\mathbf{Man}, \mathbf{Set}) \hookrightarrow \mathsf{PSh}(\mathbf{Man}, \mathbf{Grpd}) \hookrightarrow \cdots \hookrightarrow \mathsf{PSh}(\mathbf{Man}, \mathbf{sSet})$

♦ Gauge theory = higher spaces of fields

"ordinary" field theory

gauge theory

- ♦ Technically, these are described by (higher) stacks $PSh(Man, Set) \hookrightarrow PSh(Man, Grpd) \hookrightarrow \cdots \hookrightarrow PSh(Man, sSet)$
- Quantum gauge theory = higher algebras of observables

♦ Gauge theory = higher spaces of fields

"ordinary" field theory

gauge theory

- Technically, these are described by (higher) stacks $PSh(Man, Set) \hookrightarrow PSh(Man, Grpd) \hookrightarrow \cdots \hookrightarrow PSh(Man, sSet)$
- Quantum gauge theory = higher algebras of observables
- E.g. differential graded algebras dgAlg(k) := Mon(Ch(k)) in BRST/BV formalism for perturbative quantum gauge theories

♦ Gauge theory = higher spaces of fields

"ordinary" field theory

gauge theory

- ♦ Technically, these are described by (higher) stacks
 PSh(Man, Set) → PSh(Man, Grpd) → · · · → PSh(Man, sSet)
- Quantum gauge theory = higher algebras of observables
- \diamond E.g. differential graded algebras $\mathbf{dgAlg}(k) := \mathbf{Mon}(\mathbf{Ch}(k))$ in BRST/BV formalism for perturbative quantum gauge theories

Common feature of higher geometry and algebra

Higher spaces/algebras come with a notion of weak equivalences $X \stackrel{\sim}{\longrightarrow} Y$

⇒ Need for higher category theory or model category theory!

 \diamond For simplicity, consider target model category $\mathbf{M} = \mathbf{Ch}(k)$ with $k \supseteq \mathbb{Q}$

 \diamond For simplicity, consider target model category $\mathbf{M} = \mathbf{Ch}(k)$ with $k \supset \mathbb{Q}$

Thm: [Hinich] For every colored operad $\mathcal{O} \in \mathbf{Op}_{\sigma}(\mathbf{Ch}(k))$ the category of algebras $\mathbf{Alg}(\mathcal{O})$ carries a model structure in which a morphism $\kappa: A \to B$ is

- \diamond For simplicity, consider target model category $\mathbf{M} = \mathbf{Ch}(k)$ with $k \supset \mathbb{Q}$
- **Thm:** [Hinich] For every colored operad $\mathcal{O} \in \mathbf{Op}_{\sigma}(\mathbf{Ch}(k))$ the category of algebras $\mathbf{Alg}(\mathcal{O})$ carries a model structure in which a morphism $\kappa: A \to B$ is
 - (i) a weak equivalence if each $\kappa: A_c \to B_c$ is a quasi-isomorphism;

- \diamond For simplicity, consider target model category $\mathbf{M} = \mathbf{Ch}(k)$ with $k \supset \mathbb{Q}$
- **Thm:** [Hinich] For every colored operad $\mathcal{O} \in \mathbf{Op}_{\sigma}(\mathbf{Ch}(k))$ the category of algebras $\mathbf{Alg}(\mathcal{O})$ carries a model structure in which a morphism $\kappa: A \to B$ is
 - (i) a weak equivalence if each $\kappa: A_c \to B_c$ is a quasi-isomorphism;
 - (ii) a fibration if each $\kappa: A_c \to B_c$ is degree-wise surjective;

- \diamond For simplicity, consider target model category $\mathbf{M} = \mathbf{Ch}(k)$ with $k \supset \mathbb{Q}$
- **Thm:** [Hinich] For every colored operad $\mathcal{O} \in \mathbf{Op}_{\sigma}(\mathbf{Ch}(k))$ the category of algebras $\mathbf{Alg}(\mathcal{O})$ carries a model structure in which a morphism $\kappa: A \to B$ is
 - (i) a weak equivalence if each $\kappa: A_c \to B_c$ is a quasi-isomorphism;
 - (ii) a fibration if each $\kappa: A_c \to B_c$ is degree-wise surjective;
 - (iii) a cofibration if it has the left lifting property w.r.t. acyclic fibrations.

- \diamond For simplicity, consider target model category $\mathbf{M} = \mathbf{Ch}(k)$ with $k \supseteq \mathbb{Q}$
- **Thm:** [Hinich] For every colored operad $\mathcal{O} \in \mathbf{Op}_{\sigma}(\mathbf{Ch}(k))$ the category of algebras $\mathbf{Alg}(\mathcal{O})$ carries a model structure in which a morphism $\kappa: A \to B$ is
 - (i) a weak equivalence if each $\kappa: A_c \to B_c$ is a quasi-isomorphism;
 - (ii) a fibration if each $\kappa: A_c \to B_c$ is degree-wise surjective;
 - (iii) a cofibration if it has the left lifting property w.r.t. acyclic fibrations.
 - Cor: For every orthogonal category (\mathbf{C}, \perp) the category of $\mathbf{Ch}(k)$ -valued AQFTs $\mathbf{QFT}(\mathbf{C}, \perp)$ is a model category with model structure induced by the isomorphism $\mathbf{QFT}(\mathbf{C}, \perp) \cong \mathbf{Alg}(\mathcal{O}_{(\mathbf{C}, \perp)}).$

Model structure for strict AQFTs [Benini, AS, Woike]

- \diamond For simplicity, consider target model category $\mathbf{M} = \mathbf{Ch}(k)$ with $k \supset \mathbb{Q}$
- **Thm:** [Hinich] For every colored operad $\mathcal{O} \in \mathbf{Op}_{\sigma}(\mathbf{Ch}(k))$ the category of algebras $\mathbf{Alg}(\mathcal{O})$ carries a model structure in which a morphism $\kappa: A \to B$ is
 - (i) a weak equivalence if each $\kappa: A_c \to B_c$ is a quasi-isomorphism;
 - (ii) a fibration if each $\kappa: A_c \to B_c$ is degree-wise surjective;
 - (iii) a cofibration if it has the left lifting property w.r.t. acyclic fibrations.
 - **Cor:** For every orthogonal category (\mathbf{C}, \perp) the category of $\mathbf{Ch}(k)$ -valued AQFTs $\mathbf{QFT}(\mathbf{C}, \perp)$ is a model category with model structure induced by the isomorphism $\mathbf{QFT}(\mathbf{C}, \perp) \cong \mathbf{Alg}(\mathcal{O}_{(\mathbf{C}, \perp)})$.
 - Practical relevance for AQFT:
 - 1. BRST/BV formalism: Different choices of auxiliary fields/gauge fixings define weakly equivalent (but non-isomorphic) theories $\mathfrak{A} \sim \mathfrak{A}'$ in $\mathbf{QFT}(\mathbf{Loc}, \bot)$

Model structure for strict AQFTs [Benini, AS, Woike]

- \diamond For simplicity, consider target model category $\mathbf{M} = \mathbf{Ch}(k)$ with $k \supset \mathbb{Q}$
- **Thm:** [Hinich] For every colored operad $\mathcal{O} \in \mathbf{Op}_{\sigma}(\mathbf{Ch}(k))$ the category of algebras $\mathbf{Alg}(\mathcal{O})$ carries a model structure in which a morphism $\kappa: A \to B$ is
 - (i) a weak equivalence if each $\kappa: A_c \to B_c$ is a quasi-isomorphism;
 - (ii) a fibration if each $\kappa: A_c \to B_c$ is degree-wise surjective;
 - (iii) a cofibration if it has the left lifting property w.r.t. acyclic fibrations.
 - **Cor:** For every orthogonal category (\mathbf{C}, \perp) the category of $\mathbf{Ch}(k)$ -valued AQFTs $\mathbf{QFT}(\mathbf{C}, \perp)$ is a model category with model structure induced by the isomorphism $\mathbf{QFT}(\mathbf{C}, \perp) \cong \mathbf{Alg}(\mathcal{O}_{(\mathbf{C}, \perp)}).$
 - ⋄ Practical relevance for AQFT:
 - 1. BRST/BV formalism: Different choices of auxiliary fields/gauge fixings define weakly equivalent (but non-isomorphic) theories $\mathfrak{A} \sim \mathfrak{A}'$ in $\mathbf{QFT}(\mathbf{Loc}, \perp)$
 - 2. Local-to-global: Embedding $j: (\mathbf{Loc}_{\Diamond}, j^*(\bot)) \to (\mathbf{Loc}, \bot)$ defines Quillen adjunction ext : $\mathbf{QFT}(\mathbf{Loc}_{\diamondsuit}, j^*(\bot)) \rightleftharpoons \mathbf{QFT}(\mathbf{Loc}, \bot)$: res

Model structure for strict AQFTs [Benini, AS, Woike]

 \diamond For simplicity, consider target model category $\mathbf{M} = \mathbf{Ch}(k)$ with $k \supseteq \mathbb{Q}$

Thm: [Hinich] For every colored operad $\mathcal{O} \in \mathbf{Op}_{\sigma}(\mathbf{Ch}(k))$ the category of algebras $\mathbf{Alg}(\mathcal{O})$ carries a model structure in which a morphism $\kappa: A \to B$ is

- (i) a weak equivalence if each $\kappa: A_c \to B_c$ is a quasi-isomorphism;
- (ii) a fibration if each $\kappa: A_c \to B_c$ is degree-wise surjective;
- (iii) a cofibration if it has the left lifting property w.r.t. acyclic fibrations.

Cor: For every orthogonal category (\mathbf{C}, \perp) the category of $\mathbf{Ch}(k)$ -valued AQFTs $\mathbf{QFT}(\mathbf{C}, \perp)$ is a model category with model structure induced by the isomorphism $\mathbf{QFT}(\mathbf{C}, \perp) \cong \mathbf{Alg}(\mathcal{O}_{(\mathbf{C}, \perp)}).$

Practical relevance for AQFT:

- 1. BRST/BV formalism: Different choices of auxiliary fields/gauge fixings define weakly equivalent (but non-isomorphic) theories $\mathfrak{A} \sim \mathfrak{A}'$ in $\mathbf{QFT}(\mathbf{Loc}, \perp)$
- 2. Local-to-global: Embedding $j: (\mathbf{Loc}_{\Diamond}, j^*(\bot)) \to (\mathbf{Loc}, \bot)$ defines Quillen adjunction ext : $\mathbf{QFT}(\mathbf{Loc}_{\diamondsuit}, j^*(\bot)) \rightleftarrows \mathbf{QFT}(\mathbf{Loc}, \bot)$: res

Derived extension functor Lext : $\mathbf{QFT}(\mathbf{Loc}_{\diamondsuit}, j^*(\bot)) \longrightarrow \mathbf{QFT}(\mathbf{Loc}, \bot)$ is needed to obtain correct global gauge theory observables [Benini, AS, Szabo]

 \diamond Homotopy \mathcal{O} -algebras = algebras over (Σ -)cofibrant resolution $\mathcal{O}_{\infty} \xrightarrow{\sim} \mathcal{O}$

 \diamond Homotopy \mathcal{O} -algebras = algebras over $(\Sigma$ -)cofibrant resolution $\mathcal{O}_{\infty} \stackrel{\sim}{\longrightarrow} \mathcal{O}$

Thm: For every (\mathbf{C}, \perp) , the AQFT operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ is Σ -cofibrant.

 \diamond Homotopy \mathcal{O} -algebras = algebras over $(\Sigma$ -)cofibrant resolution $\mathcal{O}_{\infty} \stackrel{\sim}{\longrightarrow} \mathcal{O}$

Thm: For every (\mathbf{C}, \perp) , the AQFT operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ is Σ -cofibrant. Every $(\Sigma$ -)cofib. resolution $\mathcal{O}_{(\mathbf{C},\perp)_{\infty}} \xrightarrow{\sim} \mathcal{O}_{(\mathbf{C},\perp)}$ induces Quillen equivalence

$$\mathbf{QFT}_{\infty}(\mathbf{C},\bot) := \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)_{\infty}}) \ \ \xrightarrow{\longleftarrow} \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)}) \cong \mathbf{QFT}(\mathbf{C},\bot)$$

- \diamond Homotopy \mathcal{O} -algebras = algebras over $(\Sigma$ -)cofibrant resolution $\mathcal{O}_{\infty} \stackrel{\sim}{\longrightarrow} \mathcal{O}$
- **Thm:** For every (\mathbf{C}, \perp) , the AQFT operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ is Σ -cofibrant. Every (Σ -)cofib. resolution $\mathcal{O}_{(\mathbf{C},\perp)_{\infty}} \stackrel{\sim}{\longrightarrow} \mathcal{O}_{(\mathbf{C},\perp)}$ induces Quillen equivalence $\mathbf{QFT}_{\mathbf{c}}(\mathbf{C},\bot) := \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)_{\mathbf{c}}}) \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)}) \cong \mathbf{QFT}(\mathbf{C},\bot)$
 - ? So does this mean that only strict AQFTs are important?

- \diamond Homotopy \mathcal{O} -algebras = algebras over $(\Sigma$ -)cofibrant resolution $\mathcal{O}_{\infty} \stackrel{\sim}{\longrightarrow} \mathcal{O}$
- **Thm:** For every (\mathbf{C}, \perp) , the AQFT operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ is Σ -cofibrant. Every (Σ -)cofib. resolution $\mathcal{O}_{(\mathbf{C},\perp)_{\infty}} \stackrel{\sim}{\longrightarrow} \mathcal{O}_{(\mathbf{C},\perp)}$ induces Quillen equivalence $\mathbf{QFT}_{\mathbf{c}}(\mathbf{C},\bot) := \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)_{\mathbf{c}}}) \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)}) \cong \mathbf{QFT}(\mathbf{C},\bot)$
 - ? So does this mean that only strict AQFTs are important? NO!

- \diamond Homotopy \mathcal{O} -algebras = algebras over $(\Sigma$ -)cofibrant resolution $\mathcal{O}_{\infty} \stackrel{\sim}{\longrightarrow} \mathcal{O}$
- **Thm:** For every (\mathbf{C}, \perp) , the AQFT operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ is Σ -cofibrant. Every (Σ -)cofib. resolution $\mathcal{O}_{(\mathbf{C},\perp)_{\infty}} \stackrel{\sim}{\longrightarrow} \mathcal{O}_{(\mathbf{C},\perp)}$ induces Quillen equivalence $\mathbf{QFT}_{\infty}(\mathbf{C},\perp) := \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)_{\infty}}) \xrightarrow{\sim} \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)}) \cong \mathbf{QFT}(\mathbf{C},\perp)$
 - ? So does this mean that only strict AQFTs are important? NO!
 - Ex: • Consider stack $Y \in PSh(Man, sSet)$, e.g. Yang-Mills [Benini, AS, Schreiber]

- \diamond Homotopy \mathcal{O} -algebras = algebras over $(\Sigma$ -)cofibrant resolution $\mathcal{O}_{\infty} \xrightarrow{\sim} \mathcal{O}$
- **Thm:** For every (\mathbf{C}, \perp) , the AQFT operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ is Σ -cofibrant. Every $(\Sigma$ -)cofib. resolution $\mathcal{O}_{(\mathbf{C},\perp)_{\infty}} \xrightarrow{\sim} \mathcal{O}_{(\mathbf{C},\perp)}$ induces Quillen equivalence $\mathbf{QFT}_{\infty}(\mathbf{C},\perp) := \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)_{\infty}}) \xrightarrow{\sim} \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)}) \cong \mathbf{QFT}(\mathbf{C},\perp)$
 - ? So does this mean that only strict AQFTs are important? NO!
 - Ex: • Consider stack $Y \in PSh(Man, sSet)$, e.g. Yang-Mills [Benini, AS, Schreiber]
 - Normalized chains $N_*: \mathsf{PSh}(\mathbf{Man}, \mathbf{sSet}) \to \mathsf{PSh}(\mathbf{Man}, \mathbf{Ch}(k))$ and internal hom defines E_{∞} -algebra $N^{\infty*}(Y) = [N_*Y, k]^{\infty}$ of "functions" on Y

- \diamond Homotopy \mathcal{O} -algebras = algebras over $(\Sigma$ -)cofibrant resolution $\mathcal{O}_{\infty} \xrightarrow{\sim} \mathcal{O}$
- **Thm:** For every (\mathbf{C}, \perp) , the AQFT operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ is Σ -cofibrant. Every $(\Sigma$ -)cofib. resolution $\mathcal{O}_{(\mathbf{C},\perp)_{\infty}} \xrightarrow{\sim} \mathcal{O}_{(\mathbf{C},\perp)}$ induces Quillen equivalence $\mathbf{QFT}_{\infty}(\mathbf{C},\perp) := \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)_{\infty}}) \xrightarrow{\sim} \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)}) \cong \mathbf{QFT}(\mathbf{C},\perp)$
 - ? So does this mean that only strict AQFTs are important? NO!
 - Ex: • Consider stack $Y \in PSh(Man, sSet)$, e.g. Yang-Mills [Benini,AS,Schreiber]
 - Normalized chains $N_*: \mathsf{PSh}(\mathbf{Man}, \mathbf{sSet}) \to \mathsf{PSh}(\mathbf{Man}, \mathbf{Ch}(k))$ and internal hom defines E_{∞} -algebra $N^{\infty*}(Y) = [N_*Y, k]^{\infty}$ of "functions" on Y
 - A diagram $X : \mathbf{Loc}^{\mathrm{op}} \to \mathsf{PSh}(\mathbf{Man}, \mathbf{sSet})$ of stacks defines a functor $N^{\infty*}(X): \mathbf{Loc} \to E_{\infty} \mathbf{Alg}$

 \diamond Homotopy \mathcal{O} -algebras = algebras over $(\Sigma$ -)cofibrant resolution $\mathcal{O}_{\infty} \xrightarrow{\sim} \mathcal{O}$

Thm: For every (\mathbf{C}, \perp) , the AQFT operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ is Σ -cofibrant. Every $(\Sigma$ -)cofib. resolution $\mathcal{O}_{(\mathbf{C},\perp)_{\infty}} \xrightarrow{\sim} \mathcal{O}_{(\mathbf{C},\perp)}$ induces Quillen equivalence $\mathbf{QFT}_{\infty}(\mathbf{C},\perp) := \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)_{\infty}}) \xrightarrow{\sim} \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)}) \cong \mathbf{QFT}(\mathbf{C},\perp)$

? So does this mean that only strict AQFTs are important? NO!

Ex:

- Consider stack $Y \in PSh(Man, sSet)$, e.g. Yang-Mills [Benini,AS,Schreiber]
- Normalized chains $N_*: \mathsf{PSh}(\mathbf{Man}, \mathbf{sSet}) \to \mathsf{PSh}(\mathbf{Man}, \mathbf{Ch}(k))$ and internal hom defines E_{∞} -algebra $N^{\infty*}(Y) = [N_*Y, k]^{\infty}$ of "functions" on Y
- A diagram $X : \mathbf{Loc}^{\mathrm{op}} \to \mathsf{PSh}(\mathbf{Man}, \mathbf{sSet})$ of stacks defines a functor $N^{\infty*}(X): \mathbf{Loc} \to \underline{E_{\infty}}\mathbf{Alg}$, i.e. a (classical/non-quantized) homotopy AQFT

$$N^{\infty*}(X) \in \mathbf{Alg}(\mathcal{O}_{(\mathbf{Loc},\perp)} \otimes E_{\infty})$$

for resolution $\mathcal{O}_{(\mathbf{Loc},\perp)} \otimes E_{\infty} \xrightarrow{\sim} \mathcal{O}_{(\mathbf{Loc},\perp)}$.

- \diamond Homotopy \mathcal{O} -algebras = algebras over $(\Sigma$ -)cofibrant resolution $\mathcal{O}_{\infty} \xrightarrow{\sim} \mathcal{O}$
- **Thm:** For every (\mathbf{C}, \perp) , the AQFT operad $\mathcal{O}_{(\mathbf{C}, \perp)}$ is Σ -cofibrant. Every $(\Sigma$ -)cofib. resolution $\mathcal{O}_{(\mathbf{C},\perp)_{\infty}} \xrightarrow{\sim} \mathcal{O}_{(\mathbf{C},\perp)}$ induces Quillen equivalence

$$\mathbf{QFT}_{\infty}(\mathbf{C}, \bot) := \mathbf{Alg}(\mathcal{O}_{(\mathbf{C}, \bot)_{\infty}}) \xrightarrow{\sim} \mathbf{Alg}(\mathcal{O}_{(\mathbf{C}, \bot)}) \cong \mathbf{QFT}(\mathbf{C}, \bot)$$

? So does this mean that only strict AQFTs are important? NO!

Ex:

- Consider stack $Y \in PSh(Man, sSet)$, e.g. Yang-Mills [Benini,AS,Schreiber]
- Normalized chains $N_*: \mathsf{PSh}(\mathbf{Man}, \mathbf{sSet}) \to \mathsf{PSh}(\mathbf{Man}, \mathbf{Ch}(k))$ and internal hom defines E_{∞} -algebra $N^{\infty*}(Y) = [N_*Y, k]^{\infty}$ of "functions" on Y
- A diagram $X : \mathbf{Loc}^{\mathrm{op}} \to \mathsf{PSh}(\mathbf{Man}, \mathbf{sSet})$ of stacks defines a functor $N^{\infty*}(X): \mathbf{Loc} \to \underline{E_{\infty}} \mathbf{Alg}$, i.e. a (classical/non-quantized) homotopy AQFT

$$N^{\infty*}(X) \in \mathbf{Alg}(\mathcal{O}_{(\mathbf{Loc},\perp)} \otimes \underline{E}_{\infty})$$

for resolution $\mathcal{O}_{(\mathbf{Loc},\perp)} \otimes E_{\infty} \xrightarrow{\sim} \mathcal{O}_{(\mathbf{Loc},\perp)}$. [Quantization is complicated!]

 \diamond Let $\pi: (\mathbf{D}, \pi^*(\bot)) \to (\mathbf{C}, \bot)$ be (strictified) orthogonal category fibered in groupoids and consider $\mathbf{QFT}(\mathbf{D}, \pi^*(\bot))$

 \diamond Let $\pi: (\mathbf{D}, \pi^*(\bot)) \to (\mathbf{C}, \bot)$ be (strictified) orthogonal category fibered in groupoids and consider $\mathbf{QFT}(\mathbf{D}, \pi^*(\bot))$

Ex: Principal G-bundles on spacetimes $\pi: (\mathbf{GBun}, \pi^*(\bot)) \to (\mathbf{Loc}, \bot)$

 \diamond Let $\pi:(\mathbf{D},\pi^*(\perp))\to(\mathbf{C},\perp)$ be (strictified) orthogonal category fibered in groupoids and consider $\mathbf{QFT}(\mathbf{D}, \pi^*(\bot))$

Ex: Principal G-bundles on spacetimes $\pi: (\mathbf{GBun}, \pi^*(\bot)) \to (\mathbf{Loc}, \bot)$

Take fiber-wise homotopy invariants by homotopy right Kan extension

 \diamond Let $\pi:(\mathbf{D},\pi^*(\perp))\to(\mathbf{C},\perp)$ be (strictified) orthogonal category fibered in groupoids and consider $\mathbf{QFT}(\mathbf{D}, \pi^*(\bot))$

Ex: Principal G-bundles on spacetimes $\pi: (\mathbf{GBun}, \pi^*(\bot)) \to (\mathbf{Loc}, \bot)$

Take fiber-wise homotopy invariants by homotopy right Kan extension

 \diamond Let $\pi: (\mathbf{D}, \pi^*(\bot)) \to (\mathbf{C}, \bot)$ be (strictified) orthogonal category fibered in groupoids and consider $\mathbf{QFT}(\mathbf{D}, \pi^*(\bot))$

Ex: Principal G-bundles on spacetimes $\pi: (\mathbf{GBun}, \pi^*(\bot)) \to (\mathbf{Loc}, \bot)$

Take fiber-wise homotopy invariants by homotopy right Kan extension

Thm: Using the typical Bousfield-Kan model

$$\operatorname{hoRan}_{\pi} \mathfrak{A}(c) \ = \ \int_{d \in \pi^{-1}(c)} \big[N_* \big(B(\pi^{-1}(c) \downarrow d) \big), \mathfrak{A}(d) \big] \quad ,$$

the functor $hoRan_{\pi} \cup : \mathbf{QFT}(\mathbf{D}, \pi^*(\bot)) \to \mathbf{dgAlg}(k)^{\mathbf{C}}$ admits a lift along $U: \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)} \otimes E_{\infty}) \to \mathbf{dgAlg}(k)^{\mathbf{C}}.$

✓ AQFTs are algebras over a colored operad

$$\mathbf{QFT}(\mathbf{C},\bot) \ \cong \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)})$$

√ AQFTs are algebras over a colored operad

$$\mathbf{QFT}(\mathbf{C},\bot) \ \cong \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)})$$

✓ Each orthogonal functor $F: (\mathbf{C}, \bot) \to (\mathbf{C}', \bot')$ defines adjunction

$$F_!: \mathbf{QFT}(\mathbf{C}, \perp) \iff \mathbf{QFT}(\mathbf{C}', \perp'): F^*$$

√ AQFTs are algebras over a colored operad

$$\mathbf{QFT}(\mathbf{C},\bot) \ \cong \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)})$$

✓ Each orthogonal functor $F: (\mathbf{C}, \bot) \to (\mathbf{C}', \bot')$ defines adjunction

$$F_!: \mathbf{QFT}(\mathbf{C}, \perp) \iff \mathbf{QFT}(\mathbf{C}', \perp'): F^*$$

⇒ Interesting constructions, e.g. time-slicification and local-to-global

√ AQFTs are algebras over a colored operad

$$\mathbf{QFT}(\mathbf{C},\perp) \cong \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)})$$

✓ Each orthogonal functor $F: (\mathbf{C}, \bot) \to (\mathbf{C}', \bot')$ defines adjunction

$$F_!: \mathbf{QFT}(\mathbf{C}, \perp) \iff \mathbf{QFT}(\mathbf{C}', \perp'): F^*$$

- ⇒ Interesting constructions, e.g. time-slicification and local-to-global
- \checkmark Strict $\mathbf{Ch}(k)$ -valued AQFTs form model category and homotopy AQFTs always admit strictification (at least for $k \supset \mathbb{Q}$)

√ AQFTs are algebras over a colored operad

$$\mathbf{QFT}(\mathbf{C},\bot) \ \cong \ \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\bot)})$$

 \checkmark Each orthogonal functor $F: (\mathbf{C}, \bot) \to (\mathbf{C}', \bot')$ defines adjunction

$$F_!: \mathbf{QFT}(\mathbf{C}, \perp) \iff \mathbf{QFT}(\mathbf{C}', \perp'): F^*$$

- ⇒ Interesting constructions, e.g. time-slicification and local-to-global
- \checkmark Strict $\mathbf{Ch}(k)$ -valued AQFTs form model category and homotopy AQFTs always admit strictification (at least for $k \supset \mathbb{Q}$)
- \checkmark Examples of homotopy AQFTs over resolution $\mathcal{O}_{(\mathbf{C},\perp)} \otimes E_{\infty} \xrightarrow{\sim} \mathcal{O}_{(\mathbf{C},\perp)}$ via
 - (i) Cochain "function algebras" on ∞-stacks [no quantization yet!]

√ AQFTs are algebras over a colored operad

$$\mathbf{QFT}(\mathbf{C},\perp) \cong \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)})$$

✓ Each orthogonal functor $F: (\mathbf{C}, \bot) \to (\mathbf{C}', \bot')$ defines adjunction

$$F_!: \mathbf{QFT}(\mathbf{C}, \perp) \iff \mathbf{QFT}(\mathbf{C}', \perp'): F^*$$

- ⇒ Interesting constructions, e.g. time-slicification and local-to-global
- \checkmark Strict $\mathbf{Ch}(k)$ -valued AQFTs form model category and homotopy AQFTs always admit strictification (at least for $k \supset \mathbb{Q}$)
- \checkmark Examples of homotopy AQFTs over resolution $\mathcal{O}_{(\mathbf{C},\perp)} \otimes E_{\infty} \xrightarrow{\sim} \mathcal{O}_{(\mathbf{C},\perp)}$ via
 - (i) Cochain "function algebras" on ∞-stacks [no quantization yet!]
 - (ii) Fiber-wise homotopy invariants of QFTs on categories fibered in groupoids

√ AQFTs are algebras over a colored operad

$$\mathbf{QFT}(\mathbf{C},\perp) \cong \mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)})$$

 \checkmark Each orthogonal functor $F: (\mathbf{C}, \bot) \to (\mathbf{C}', \bot')$ defines adjunction

$$F_!: \mathbf{QFT}(\mathbf{C}, \perp) \iff \mathbf{QFT}(\mathbf{C}', \perp'): F^*$$

- ⇒ Interesting constructions, e.g. time-slicification and local-to-global
- \checkmark Strict $\mathbf{Ch}(k)$ -valued AQFTs form model category and homotopy AQFTs always admit strictification (at least for $k \supseteq \mathbb{Q}$)
- \checkmark Examples of homotopy AQFTs over resolution $\mathcal{O}_{(\mathbf{C},\perp)} \otimes E_{\infty} \xrightarrow{\sim} \mathcal{O}_{(\mathbf{C},\perp)}$ via
 - (i) Cochain "function algebras" on ∞-stacks [no quantization yet!]
 - (ii) Fiber-wise homotopy invariants of QFTs on categories fibered in groupoids
- Open problem: Examples of quantum gauge theories, e.g. via deformation quantization of (derived) symplectic stacks [Calaque, Pantev, Toën, Vaquié, Vezzosi]