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Abstract

Modern approaches to representation theory and quantum (field) theory encode algebraic
structures in terms of m-dimensional geometric pictures, such as embeddings of multiple m-
disks into a single bigger m-disk. This mini-course gives an elementary introduction to these
subjects through the lens of factorization algebras. As concrete examples, we will see how
quantum mechanics and also Lie algebra representations admit an interpretation in terms of
1-dimensional geometry. We will conclude with some comments on the much richer, but also
more complicated, case of algebraic structures arising from (m > 1)-dimensional geometry.

These lecture notes are based on a 5+2 hours mini-course at the LMS Undergraduate Summer
School, University of Sheffield, 16–28 July 2023.

Contents

1 Background on algebras and representations 1

2 The definition of a prefactorization algebra 6

3 Locally constant prefactorization algebras in 1 dimension 10

4 Geometric examples of prefactorization algebras 13
4.1 Quantum mechanics as a prefactorization algebra . . . . . . . . . . . . . . . . . . . 14
4.2 Universal enveloping algebra as a prefactorization algebra . . . . . . . . . . . . . . 16

5 Outlook: Current research related to prefactorization algebras 17

6 Exercises 18

1 Background on algebras and representations

The aim of this section is to get familiar with some basic algebraic structures, in particular
unital associative algebras and Lie algebras, and their representations. We will focus on algebraic
structures that are defined on vector spaces (or later on cochain complexes of vector spaces) over
a fixed field K of characteristic 0. In practice, K will be either the field of real numbers R or
complex numbers C.

Before we can define the concept of an algebra, we have to recall the notion of tensor products
of vector spaces.
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Definition 1.1. A tensor product of two vector spaces V and W is a vector space V ⊗ W
together with a bilinear map V × W → V ⊗ W , (v, w) 7→ v ⊗ w that satisfies the following
universal property: For every bilinear map f : V ×W → Z to a vector space Z, there exists a
unique linear map f̂ : V ⊗W → Z such that the diagram

V ×W

%%

f
// Z

V ⊗W
f̂

∃!
;;

(1.1)

commutes, i.e. f(v, w) = f̂(v ⊗ w) for all v ∈ V and w ∈W .

Remark 1.2. Note that Definition 1.1 does not provide an explicit formula for the tensor product
V ⊗W , but it defines it more abstractly by a so-called universal property. Defining the object
of interest in terms of a universal property is typical in the context of category theory, see e.g.
Leinster’s book [Lei14] for an excellent introduction. The advantage is that the universal property
makes it clear what the tensor product actually does: It turns bilinear maps f : V ×W → Z into
linear maps f̂ : V ⊗W → Z such that we have a bijection Lin(V ⊗W,Z) ∼= BiLin((V,W ), Z) for
all vector spaces Z. By abstract non-sense from category theory (see again [Lei14]), one shows
that, provided it exists, the tensor product is unique up to canonical linear isomorphisms, which
is why people often say the tensor product instead of the technically more correct, but awkward,
phrase of a tensor product. To prove existence, note that there exists an explicit model for the
tensor product that is given as follows: Denote by K

(
V ×W

)
the vector space that is spanned

by all elements of the Cartesian product V ×W and by R ⊆ K
(
V ×W

)
the sub-vector space

spanned by the elements

(v1 + v2, w)− (v1, w)− (v2, w) , (1.2a)

(v, w1 + w2)− (v, w1)− (v, w2) , (1.2b)

(s v, w)− s (v, w) , (1.2c)

(v, sw)− s (v, w) , (1.2d)

for all v, v1, v2 ∈ V , w,w1, w2 ∈W and s ∈ K. Then the quotient vector space

V ⊗W := K
(
V ×W

)/
R (1.3)

and the bilinear map V ×W → V ⊗W , (v, w) 7→ [v, w] that assigns equivalence classes defines
a tensor product. M

The tensor product of vector spaces has very pleasant properties that can be proven by using
the universal property.

Lemma 1.3. There exist canonical linear isomorphisms

αV,W,Z : (V ⊗W )⊗ Z
∼=−→ V ⊗ (W ⊗ Z) , (1.4a)

λV : K⊗ V
∼=−→ V , (1.4b)

ρV : V ⊗K
∼=−→ V , (1.4c)

τV,W : V ⊗W
∼=−→ W ⊗ V . (1.4d)

These isomorphisms endow the category of vector spaces over K and linear maps with the structure
of a symmetric monoidal category, see e.g. [Ric20, Chapter 8] for the relevant definitions.

2



Remark 1.4. The isomorphisms α (called associator), λ (called left unitor) and ρ (called right
unitor) are often suppressed from the notations. For example, one simply writes V ⊗W ⊗ Z for
the tensor product of three vector spaces and implicitly understands that this can either mean
(V ⊗W )⊗ Z or the canonically isomorphic (via αV,W,Z) vector space V ⊗ (W ⊗ Z). The reason
why this is consistent is the content of Mac Lane’s coherence theorem in category theory, see e.g.
[ML98] for the details. M

After all these preparations, we are now finally ready to define a first important type of
algebraic structure.

Definition 1.5. A unital associative algebra is a triple (A,µ, η) consisting of a vector space A, a
linear map µ : A⊗A→ A , a⊗b 7→ a b (called multiplication) and a linear map η : K→ A , s 7→ s1
(called unit) that satisfy the following properties:

(1) Associativity: The diagram

A⊗A⊗A
µ⊗id

��

id⊗µ
// A⊗A

µ

��

A⊗A µ
// A

(1.5)

commutes, i.e. (a b) c = a (b c) =: a b c for all a, b, c ∈ A.

(2) Unitality: The diagrams

K⊗A

λA
((

η⊗id
// A⊗A
µ

��

A⊗Kid⊗η
oo

ρA
vv

A

(1.6)

commute, i.e. 1 a = a = a1 for all a ∈ A.

A unital associative algebra (A,µ, η) is called commutative if the diagram

A⊗A

µ
##

τA,A
// A⊗A

µ
{{

A

(1.7)

commutes, i.e. a b = b a for all a, b ∈ A.

Example 1.6. The simplest example of a unital associative algebra is A = K with multiplication
µ : K⊗K→ K , s⊗ t 7→ s t given by the multiplication of the field K and unit η : K→ K , s 7→ s
given by the identity map. This algebra is commutative.

A more interesting family of examples is given by taking the vector space of n × n-matrices
A = Matn×n(K) with multiplication µ : Matn×n(K)⊗Matn×n(K)→ Matn×n(K) given by matrix
multiplication and unit η : K→ Matn×n(K) , s 7→ s1 determined by the identity matrix 1. This
algebra is not commutative (i.e. non-commutative) for n ≥ 2. O

Example 1.7. Unital associative algebras also arise in quantum physics. For instance, the
algebra of observables of a quantum particle in 1 dimension is the unital associative algebra
A over K = C that is generated by the position operator q and the momentum operator p,
which are required to satisfy Heisenberg’s commutation relation q p− p q = i ~1. One can write
this algebra more formally as A = C[q, p]

/
I, where C[q, p] denotes the free unital associative

algebra generated by q and p, and I = (q p− p q− i ~1) denotes the two-sided ideal generated by
the commutation relation. This algebra is non-commutative, which is an essential feature that
distinguishes quantum physics from classical physics. O
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A second type of algebraic structure that will be relevant in this mini-course is that of a Lie
algebra.

Definition 1.8. A Lie algebra is a pair (g, [ · , · ]) consisting of a vector space g and a linear map
[ · , · ] : g⊗ g→ g , x⊗ y 7→ [x, y] (called Lie bracket) that satisfies the following properties:

(1) Antisymmetry:

[x, y] = −[y, x] , (1.8)

for all x, y ∈ g.

(2) Jacobi identity:

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 , (1.9)

for all x, y, z ∈ g.

Example 1.9. A Lie algebra should be thought of as an object that describes “infinitesimal
transformations”. Let us illustrate this by considering a simple example that is related to the
concept of spin in physics. Denote by

SU(2) :=
{
U ∈ Mat2×2(C) : U † = U−1 and det(U) = 1

}
(1.10)

the group of unitary 2× 2-matrices with determinant 1, which is called the special unitary group
of degree 2. The identity element of this group is the identity matrix 1 and the group operation
is given by matrix multiplication. We are interested in transformations that are very close to the
identity, which we model by matrix exponentials U = eλX = 1+ λX +O(λ2) for λ a sufficiently
small parameter such that the λ2 terms can be neglected. (You can formalize this by working
with nilpotent parameters satisfying λ2 = 0.) For such U to be an element of SU(2), the exponent
matrix X ∈ Mat2×2(C) must be anti-Hermitian X† = −X and trace-free Tr(X) = 0. The vector
space

su(2) :=
{
X ∈ Mat2×2(C) : X† = −X and Tr(X) = 0

}
(1.11)

of anti-Hermitian and trace-free 2 × 2-matrix thus describes the first-order infinitesimal neigh-
borhood of the identity 1, i.e. it describes infinitesimal transformations. From the given group
structure on SU(2) one can determine a Lie bracket on su(2), which is given explicitly by the
commutator for matrix multiplication

[X,Y ] := X Y − Y X , (1.12)

for all X,Y ∈ su(2). A basis for the vector space underlying su(2) is given by the three Pauli
matrices (suitably normalized and rescaled by the imaginary unit i ∈ C to be anti-Hermitian)

X1 = − i

2

(
0 1
1 0

)
, X2 = − i

2

(
0 − i
i 0

)
, X3 = − i

2

(
1 0
0 −1

)
. (1.13)

The Lie bracket in this basis reads as

[Xa, Xb] = εabcXc , (1.14)

where εabc is the totally antisymmetric Levi-Civita symbol with ε123 = 1. Those of you who took
a quantum physics module will recognize this as the Lie algebra that describes spin. O

Example 1.10. As a more mathematical example, we observe that every unital associative alge-
bra (A,µ, η) has an underlying Lie algebra (A, [ · , · ]) with Lie bracket defined by the commutator
[a, b] := a b− b a, for all a, b ∈ A. O
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Construction 1.11. It turns out that there exists a construction in the reverse direction of
Example 1.10, i.e. one can associate to every Lie algebra (g, [ · , · ]) a unital associative algebra
that is denoted by Ug and called the universal enveloping algebra. For this one forms the free
unital associative algebra over g, i.e.

Tg :=

∞⊕
n=0

g⊗n :=

∞⊕
n=0

g⊗ · · · ⊗ g︸ ︷︷ ︸
n times

(1.15)

with multiplication given by µ
(
(x1 ⊗ · · · ⊗ xn) ⊗ (xn+1 ⊗ · · · ⊗ xn+m)

)
:= x1 ⊗ · · · ⊗ xn+m and

unit 1 := 1 ∈ K = g⊗0 ⊆ Tg, and defines

Ug := Tg
/
I (1.16)

as the quotient by the two-sided ideal I =
(
x⊗y−y⊗x− [x, y] : ∀x, y ∈ g

)
that is determined by

the Lie bracket. Note that there exists a Lie algebra morphism (g, [ · , · ])→ (Ug, [ · , · ]) , x 7→ x
to the underlying Lie algebra from Example 1.10 of the universal enveloping algebra.

The universal enveloping algebra can also be defined more conceptually and abstractly through
the following universal property: For every unital associative algebra (A,µ, η) and every Lie
algebra morphism h : (g, [ · , · ]) → (A, [ · , · ]) to its underlying Lie algebra, there exists a unique
unital associative algebra morphism ĥ : (Ug, µ, η) → (A,µ, η) such that the diagram of linear
maps

g

��

h // A

Ug

∃!

ĥ

>>

(1.17)

commutes, i.e. we have a bijection HomuAs

(
(Ug, µ, η), (A,µ, η)

) ∼= HomLie

(
(g, [ · , · ]), (A, [ · , · ])

)
between the set of unital associative algebra morphisms and the set of Lie algebra morphisms. .

To conclude this section, we introduce the concept of modules (also called representations)
over a unital associative algebra and over a Lie algebra.

Definition 1.12. A left module (or representation) over a unital associative algebra (A,µ, η) is
a pair (M, `) consisting of a vector space M and a linear map ` : A ⊗M → M , a ⊗m 7→ a ·m
(called left action) that satisfies the following properties:

(1) Compatibility with multiplication: The diagram

A⊗A⊗M
µ⊗id

��

id⊗`
// A⊗M

`
��

A⊗M
`

//M

(1.18)

commutes, i.e. a · (b ·m) = (a b) ·m for all a, b ∈ A and m ∈M .

(2) Compatibility with unit: The diagram

K⊗M

λM ##

η⊗id
// A⊗M

`
{{

M

(1.19)

commutes, i.e. 1 ·m = m for all m ∈M .
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Definition 1.13. A left module (or representation) over a Lie algebra (g, [ · , · ]) is a left module
(M, `) over the associated universal enveloping algebra (Ug, µ, η) from Construction 1.11. This
is equivalent to the datum of a pair (M, `) consisting of a vector space M and a linear map
` : g⊗M →M , x⊗m 7→ x ·m that satisfies

x · (y ·m)− y · (x ·m) = [x, y] ·m , (1.20)

for all x, y ∈ g and m ∈M .

Remark 1.14. There exists an analogous concept of right modules. It would be a good exercise
for you to write down the relevant definition. M

Example 1.15. The following are simple examples of left modules over the algebras introduced
in the examples above:

(i) The matrix algebra A = Matn×n(K) from Example 1.6 has a left module given by M = Kn

and matrix multiplication ` : Matn×n(K)⊗Kn → Kn.

(ii) Modulo functional analytical subtleties (that will not be discussed here, but can be con-
trolled), the algebra of quantum observables from Example 1.7 has a left module given by
the Hilbert space of wave functions M = L2(R) 3 ψ(x). Explicitly, the position operator
acts as a multiplication operator (q ·ψ)(x) = xψ(x) and the momentum operator acts as a

derivative operator (p · ψ)(x) = − i ~ dψ(x)
dx .

(iii) The Lie algebra su(2) from Example 1.9 has a left module given by M = C2 and matrix
multiplication ` : su(2) ⊗ C2 → C2. In physics, this representation is interpreted as a spin
1
2 particle, and other values for the spin correspond to different representations.

It is important to emphasize that the classification of modules/representations is in general a
difficult problem that is addressed in the field of representation theory. See e.g. [Hum72] for a
good textbook on the representation theory of Lie algebras. O

2 The definition of a prefactorization algebra

In this section we introduce the concept of prefactorization algebras, which are more sophisticated
algebraic structures that arise in quantum field theory [CG17, CG21], algebraic topology [AF15,
AF20] and (higher-dimensional) representation theory [BZBJ18a, BZBJ18b]. Loosely speaking,
prefactorization algebras are algebraic structures with a geometric origin, in the sense that they
are determined by the shape of a manifold X. To avoid over-complicating things, we will typically
consider the case where X = Rm is a Cartesian space of dimension m ≥ 1, but if you are familiar
with manifolds you can also take X to be a sphere, a torus, or any other manifold.

Let us fix an m-dimensional manifold X without boundary or, for simplicity, the Cartesian
space X = Rm.

Definition 2.1. An open subset U ⊆ X is called an m-disk if it is diffeomorphic U ∼= Rm to a
Cartesian space. This means that there exists a smooth (i.e. infinitely often differentiable) map
f : U → Rm that admits a smooth inverse f−1 : Rm → U such that f−1 ◦f = id and f ◦f−1 = id.

Example 2.2. In low dimension, we recover some old friends:

• For the 1-dimensional Cartesian space X = R1, a 1-disk is precisely an open interval
U = (a, b) ⊆ R1.
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• For the 2-dimensional Cartesian space X = R2, the open subset

[that’s a 2-disk] (2.1)

that looks like a disk is a 2-disk according to Definition 2.1, and so is the open subset

[that’s also a 2-disk] (2.2)

that looks like a banana. To see a counterexample, note that an annulus

[that’s not a 2-disk] (2.3)

is not a 2-disk.

• For the 3-dimensional Cartesian space X = R3, examples of 3-disks are given by open balls.
Similarly to the bananas in 2 dimensions, open subsets that look like potatoes are also
3-disks.

What would be examples of 2-disks in the 2-dimensional sphere? O

We can now state the definition of a prefactorization algebra. At first sight, this looks quite
involved, but we will illustrate and clarify this concept throughout this mini-course.

Definition 2.3. A prefactorization algebra F on X consists of the following data:

(i) For every m-disk U ⊆ X, a vector space F(U).

(ii) For every non-negative integer n ≥ 0 and every tuple ((U1, . . . , Un), U) of m-disks in X
such that Ui ∩ Uj = ∅, for all i 6= j, are mutually disjoint and Ui ⊆ U , for all i = 1, . . . , n,
a linear map (called structure map)

FU(U1,...,Un) :
n⊗
i=1

F(Ui) := F(U1)⊗ · · · ⊗ F(Un) −→ F(U) . (2.4)

These data have to satisfy the following properties:

(1) Compositionality: For all families of tuples of mutually disjoint m-disks ((U1, . . . , Un), U)
and ((Ui1, . . . , Uiki), Ui), for i = 1, . . . , n, the diagram

n⊗
i=1

ki⊗
j=1

F(Uij)

FU
(U11,...,Unkn

)
""

⊗
i F
Ui
(Ui1,...,Uiki

)
//

n⊗
i=1

F(Ui)

FU
(U1,...,Un)

~~

F(U)

(2.5)

commutes.
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(2) Identity: For all m-disks U ⊆ X, the linear map FUU = id : F(U)→ F(U) is the identity.

(3) Permutation equivariance: For all tuples of mutually disjoint m-disks ((U1, . . . , Un), U) and
all permutations σ ∈ Σn on n letters, the diagram

n⊗
i=1

F(Ui)

FU
(U1,...,Un)

  

∼=
τσ //

n⊗
i=1

F(Uσ(i))

FU
(Uσ(1),...,Uσ(n))||

F(U)

(2.6)

commutes, where τσ :
n⊗
i=1

F(Ui) →
n⊗
i=1

F(Uσ(i)) , a1 ⊗ · · · ⊗ an 7→ aσ(1) ⊗ · · · ⊗ aσ(n) is the

permutation of elements defined by the linear isomorphism in (1.4d).

Remark 2.4. To better understand and appreciate Definition 2.3 of a prefactorization algebra
F on X, let us look more closely at this structure and add some clarifying comments. The first
observation is that a prefactorization algebra consists of many vector spaces, while the simpler
algebraic structures from Section 1 are defined on a single vector space. These vector spaces
have a geometric meaning as they are assigned to m-disks in X and one should think of F(U) as
describing some “local data that lives in the m-disk U ⊆ X”. In physics, one thinks of F(U) as
describing local observables that one can measure in the region U ⊆ X.

The structure maps from Definition 2.3 (ii) define something like n-to-1 multiplication op-
erations, but again with a geometric meaning: One can only multiply local data from mutually
disjoint m-disks U1, . . . , Un ⊆ X and the result will be a local datum in the larger m-disk U ⊆ X
that includes all the Ui’s. As a simple example, consider the following configuration of 1-disks in
X = R1

U

U2 U1 U3
(2.7a)

and note that a prefactorization algebra assigns to this picture the structure map

FU(U1,U2,U3) : F(U1)⊗ F(U2)⊗ F(U3) −→ F(U) . (2.7b)

Such pictures become more interesting in higher dimensions. For example, a prefactorization
algebra on X = R2 assigns to the 2-disk configuration

U

U2

U1

U3

U4

(2.8a)

the structure map

FU(U1,U2,U3,U4) : F(U1)⊗ F(U2)⊗ F(U3)⊗ F(U4) −→ F(U) . (2.8b)

In physics, one thinks of these multiplications as combining a family of local observables in the
Ui’s to an observable that one can measure in the larger region U .
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The properties listed in Definition 2.3 become very natural from this geometric point of
view. Property (1) says that composing algebraically the n-to-1 multiplications coincides with
composing geometrically the m-disk configurations. For example, consider an iterated 2-disk
configuration in X = R2 of the form

U

U1

U11

U12

U2

U21

U22

(2.9)

that corresponds in the notation of Definition 2.3 to the following three tuples of mutually disjoint
2-disks ((U1, U2), U), ((U11, U12), U1) and ((U21, U22), U2). We can evaluate this picture in two
different ways: The first option is to compose geometrically, i.e. forget the intermediate green
2-disks U1 and U2, which gives the configuration

U

U11

U12
U21

U22

(2.10)

of double-indexed 2-disks ((U11, U12, U21, U22), U) in U . The prefactorization algebra assigns to
this picture the structure map

FU(U11,U12,U21,U22) : F(U11)⊗ F(U12)⊗ F(U21)⊗ F(U22) −→ F(U) . (2.11)

The second option is to assign to (2.9) via the prefactorization algebra the three structure maps

FU(U1,U2) : F(U1)⊗ F(U2) −→ F(U)

FU1

(U11,U12) : F(U11)⊗ F(U12) −→ F(U1)

FU2

(U21,U22) : F(U21)⊗ F(U22) −→ F(U2) (2.12)

and then compose algebraically

FU(U1,U2) ◦
(
FU1

(U11,U12) ⊗ FU2

(U21,U22)

)
: F(U11)⊗ F(U12)⊗ F(U21)⊗ F(U22) −→ F(U) . (2.13)

Property (1) from Definition 2.3 then demands that the two linear maps in (2.11) and (2.13) are
the same.

Properties (2) and (3) from Definition 2.3 are simpler: Property (2) states that associated
with the trivial single m-disk inclusion ((U), U) is the identity map FUU = id. Property (3) states
that the multiplication operations FU(U1,...,Un) do not depend on the ordering that one chooses to

write down the tuple (U1, . . . , Un) of mutually disjoint m-disks, which is reflected by the geometric
pictures as in (2.8) where there is no canonical ordering of disks, besides the arbitrary numerical
labels that we attach to the disks. M
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There is an interesting subclass of prefactorization algebras that is related to topological
quantum field theories. Loosely speaking, their main feature is that the vector space F(U) that
is assigned to an m-disk U ⊆ X is insensitive to the “size” of the disk. This can be formalized as
follows.

Definition 2.5. A prefactorization algebra F on X is called locally constant if the structure map

FU
′

U : F(U)
∼=−→ F(U ′) is a linear isomorphism, for every m-disk inclusion U ⊆ U ′ ⊆ X.

Remark 2.6. In their books [CG17, CG21], Costello and Gwilliam introduce also the concept
of factorization algebras, which are prefactorization algebras that satisfy an additional local-to-
global (i.e. descent) condition that is similar to that of a cosheaf. This condition will play no role
in what we will discuss in this mini-course, hence we do not have to explain it in detail. M

3 Locally constant prefactorization algebras in 1 dimension

In this section we will describe in some detail the simplest case of locally constant prefactorization
algebras on the 1-dimensional Cartesian space X = R1. We will see that these are related
(in a precise way) to the more traditional algebraic concept of unital associative algebras from
Section 1. This suggests that one should think of locally constant prefactorization algebras on
higher-dimensional Cartesian spaces X = Rm as higher-dimensional versions of unital associative
algebras. This suggestion was made precise in a theorem of Lurie, who identifies locally constant
prefactorization algebras on X = Rm with the Em-algebras (a.k.a. little m-disk algebras) from
algebraic topology. Details can be found in [LurHA], see also the excellent lecture notes [Tan20],
but these topics go far beyond the scope of this mini-course.

The study of prefactorization algebras on X = R1 can be simplified by the following elemen-
tary observation.

Lemma 3.1. Let F be any (not necessarily locally constant) prefactorization algebra on X = R1.
Then the collection of all structure maps from Definition 2.3 (ii) is completely determined by the
sub-collection of structure maps FU(U1,...,Un) that are associated with tuples ((U1, . . . , Un), U) which

are ordered along R1, i.e. U1 < · · · < Un.

Proof. Given any tuple ((U1, . . . , Un), U) of mutually disjoint 1-disks, there exists a unique per-
mutation σ ∈ Σn such that the permuted tuple ((Uσ(1), . . . , Uσ(n)), U) is ordered along R1. Using

property (3) from Definition 2.3, we find that the structure map FU(U1,...,Un) is determined by

FU(Uσ(1),...,Uσ(n))
, which completes the proof.

To see how unital associative algebras are related to locally constant prefactorization algebras
on X = R1, it is useful to understand first how one can pass from unital associative algebras to
prefactorization algebras.

Construction 3.2. Let (A,µ, η) be a unital associative algebra, see Definition 1.5. Our goal is
to build from this datum a prefactorization algebra FA on X = R1. To any 1-disk U ⊆ R1, we
assign the underlying vector space

FA(U) := A (3.1)

of the algebra. Using Lemma 3.1, it suffices to define the structure maps for all ordered tuples
((U1, . . . , Un), U) of mutually disjoint 1-disks in U ⊆ R1, i.e. U1 < · · · < Un. We define

(FA)U(U1,...,Un) := µn : A⊗n −→ A , a1 ⊗ · · · ⊗ an 7−→ a1 · · · an (3.2)

by multiplying the n elements a1, . . . , an ∈ A in the algebra (A,µ, η). For n = 0, this should be
read as the unit (FA)U∅ := η : A⊗0 = K → A , s 7→ s1. For an ordered tuple of length n = 2,
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we have that (FA)U(U1,U2) = µ is the multiplication map of the algebra (A,µ, η). It is a good
exercise for you to check that these structure maps satisfy the properties from Definition 2.3.
Since (FA)U

′
U = id : A → A is the identity, for all U ⊆ U ′ ⊆ X, the prefactorization algebra FA

on X = R1 is locally constant in the sense of Definition 2.5. .

Proposition 3.3. Every locally constant prefactorization algebra F on X = R1 is isomorphic to
one of the form FA from Construction 3.2, for some unital associative algebra (A,µ, η).

Proof. I will only sketch a proof and encourage you to fill in the details.

Using local constancy, we obtain for every 1-disk U ⊆ R1 a linear isomorphism

FR1

U : F(U)
∼=−→ F(R1) (3.3)

that allows us to identify the vector space F(U) with the vector space F(R1) that is assigned to
the whole real line R1, which we shall denote by

A := F(R1) . (3.4)

Given any ordered tuple ((U1, . . . , Un), U) of mutually disjoint 1-disks in U ⊆ R1, we define a
linear map A⊗n → A by the commutative diagram

A⊗n
µU
(U1,...,Un)

// A

⊗n
i=1 F(Ui)

∼=
⊗
i F

R1
Ui

OO

FU
(U1,...,Un)

// F(U)

∼= FR1
U

OO

. (3.5)

Using property (1) from Definition 2.3, one finds that the linear map µU(U1,...,Un) is independent

of the choice of the big 1-disk U , hence we can set U = R1. Concerning dependence on the tuple
(U1, . . . , Un) of mutually disjoint 1-disks, we observe by using again property (1) that, given any
(U ′1, . . . , U

′
n) such that U ′i ⊆ Ui for all i = 1, . . . , n, we have

µR
1

(U1,...,Un) = µR
1

(U ′1,...,U
′
n) . (3.6)

This implies that µR
1

(U1,...,Un) depends only on the length of the ordered tuple of mutually disjoint

1-disks along R1, i.e. we can write µn := µR
1

(U1,...,Un). For low n, this defines a unit µ0 : K →
A , s 7→ s1, gives the identity µ1 = id : A→ A , a 7→ a and defines a multiplication µ2 : A⊗A→
A , a⊗ b 7→ a b. Using again property (1) from Definition 2.3, one shows that (A,µ2, µ0) defines
a unital associative algebra and also that µn : A⊗n → A , a1 ⊗ · · · ⊗ an 7→ a1 · · · an is given

by multiplying the n algebra elements. The desired isomorphism F
∼=−→ FA of prefactorization

algebras is defined by the components FR1

U : F(U) → FA(U) = A = F(R1), for all 1-disks
U ⊆ R1.

Remark 3.4. Proposition 3.3 can be sharpened as follows: There exists an equivalence PFAl.c.
R1 '

AlguAs between the category PFAl.c.
R1 of locally constant prefactorization algebras on X = R1

and the category AlguAs of unital associative algebras. This equivalence is exhibited by functors
that can be defined using the techniques from Construction 3.2 and Proposition 3.3. M

Example 3.5. Recalling Example 1.7 and Construction 1.11, we can use the results above to re-
interpret the algebra of quantum observables A = C[q, p]

/
I of a 1-dimensional quantum particle

and the universal enveloping algebra Ug of a Lie algebra g as locally constant prefactorization
algebras FA and FUg on X = R1. Hence, the theory of prefactorization algebras subsumes the
traditional concepts from Section 1. We will see in Section 4 below how these examples can be
constructed directly as prefactorization algebras by using more geometric techniques. O
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You might now ask if it is possible to describe also the concept of modules (or representations)
from Definition 1.12 in terms of prefactorization algebras. A left module over a unital associative
algebra (A,µ, η) consists of a vector space M (in general different from A) and a left action
` : A⊗M →M . This left-sidedness can be encoded geometrically by the half-line X = (−∞, 0]

(−∞, 0]

U B
, (3.7)

which comes with two different types of 1-disks: The first type are the usual open 1-disks U =
(a, b) ⊆ X in the interior, and the second type are half-open 1-disks B = (a, 0] ⊆ X that include
the boundary point 0.

One can now define in complete analogy to Definition 2.3 a concept of prefactorization algebras
on X = (−∞, 0] that takes into account these two types of 1-disks. The result from Lemma 3.1
still holds true in this case. The correct generalization of the local constancy property from

Definition 2.5 is to demand that FU
′

U : F(U)
∼=−→ F(U ′) and FB

′
B : F(B)

∼=−→ F(B′) are linear
isomorphisms, for all interior disk inclusions U ⊆ U ′ ⊆ X and all boundary disk inclusions

B ⊆ B′ ⊆ X. Crucially, one should not demand that FBU : F(U)
6∼=−→ F(B) is an isomorphism

for the inclusion U ⊆ B ⊆ X of an interior disk into a boundary disk. (Note that there are
no inclusions of the form B ⊆ U ⊆ X, hence there are no structure maps of the type FUB.)
To understand how modules arise in the context of prefactorization algebras, we now generalize
Construction 3.2 to the case of X = (−∞, 0].

Construction 3.6. Let (M, `) be a left module over a unital associative algebra (A,µ, η), see
Definition 1.12. Let us also choose any element m0 ∈ M in the module, whose role will become
clearer below. Our goal is to build from this datum a prefactorization algebra F(A,M,m0) on the
half-line X = (−∞, 0]. To any interior 1-disk U = (a, b) ⊆ X, we assign the underlying vector
space

F(A,M,m0)(U) := A (3.8)

of the algebra, and to any boundary 1-disk B = (a, 0] ⊆ X we assign the underlying vector space

F(A,M,m0)(B) := M (3.9)

of the module. Concerning the structure maps, we can assume all tuples of mutually disjoint
disks to be ordered along X = (−∞, 0], and find the following three types of disk configurations(

(U1, . . . , Un), U
)

[all interior to interior] , (3.10a)(
(U1, . . . , Un−1, Bn), B

)
[all but one interior to boundary] , (3.10b)(

(U1, . . . , Un), B
)

[all interior to boundary] . (3.10c)

To the first type, we assign as in Construction 3.2 the structure map

(F(A,M,m0))
U
(U1,...,Un) : A⊗n −→ A , a1 ⊗ · · · ⊗ an 7−→ a1 · · · an (3.11)

that multiplies n algebra elements. To the second type, we assign the structure map

(F(A,M,m0))
B
(U1,...,Un−1,Bn) : A⊗(n−1) ⊗M −→ M ,

a1 ⊗ · · · ⊗ an−1 ⊗m 7−→ (a1 · · · an−1) ·m (3.12)

that is given by the left action. Using property (1) in Definition 1.12, one can also write this
equivalently as (a1 · · · an−1) ·m = a1 · (a2 · (· · · (an−1 ·m))). The structure maps associated with
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disk configurations of the third type make use of our chosen element m0 ∈M in the module, and
they read as

(F(A,M,m0))
B
(U1,...,Un) : A⊗n −→ M , a1 ⊗ · · · ⊗ an 7−→ (a1 · · · an) ·m0 . (3.13)

It is a good exercise for you to check that this defines a prefactorization algebra F(A,M,m0) on X =
(−∞, 0], which is locally constant in the sense explained in the text before this construction. .

The proof of the following result is similar to the one of Proposition 3.3 and it will be skipped
for reasons of limited time.

Proposition 3.7. Every locally constant prefactorization algebra F on X = (−∞, 0] is isomorphic
to one of the form F(A,M,m0) from Construction 3.6, for some left module (M, `) over a unital
associative algebra (A,µ, η) and an element m0 ∈M .

Example 3.8. Recalling Example 1.15, we make the following observations:

(i) Representations of the algebra of quantum observables of a quantum particle can be studied
from the point of view of locally constant prefactorization algebras on X = (−∞, 0]. The
algebra of quantum observables A lives in the interior disks U ⊆ X and the (Hilbert) space
of wave functions M lives on the boundary disks B ⊆ X. It makes sense to interpret the
distinguished element m0 ∈M as the state in which one prepares the quantum system, e.g.
the ground state.

(ii) Representations of a Lie algebra g can be studied from the point of view of locally constant
prefactorization algebras on X = (−∞, 0]. In this case the Lie algebra lives, in the form
of its universal enveloping algebra Ug, in the interior disks U ⊆ X and representations M
live on the boundary disks B ⊆ X. The representations one gets in this way come with the
additional datum of a distinguished element m0 ∈M .

If one does not wish to have a distinguished element m0 ∈ M , one can modify the definition of
prefactorization algebra on X = (−∞, 0] by discarding the structure maps that are associated
with the third type of disk configurations in (3.10). O

4 Geometric examples of prefactorization algebras

So far, our examples of prefactorization algebras have been rather algebraic, in the sense that we
take some algebraic input (e.g. a unital associative algebra) and assign to this a prefactorization
algebra. The goal of this section is to illustrate geometric constructions of prefactorization alge-
bras, focusing on our running examples given by quantum mechanics and universal enveloping
algebras. To simplify the presentation, we will consider only the case of the real line X = R1,
but it is important to emphasize that such geometric constructions generalize easily to higher-
dimensional X = Rm and also to manifolds.

In order to construct examples of prefactorization algebras by geometric methods, one needs
the concept of cochain complexes from homological algebra, see e.g. [Wei94]. A detailed intro-
duction to this subject would go far beyond the scope of this mini-course, but fortunately it will
be sufficient for us to understand the definitions of a cochain complex and of its cohomology.

Definition 4.1. A cochain complex (V,d) is a family V = {V i}i∈Z of vector spaces V i, labeled
by integers i ∈ Z (called degrees), together with a family d = {di : V i → V i+1}i∈Z of linear maps
(called differential) that satisfy di+1 ◦ di = 0, for all i ∈ Z. The cohomology of a cochain complex
(V,d) is the family of vector spaces H•(V,d) = {H i(V,d)}i∈Z defined by

H i(V,d) :=
Ker

(
di : V i → V i+1

)
Im
(
di−1 : V i−1 → V i

) , (4.1)

for all i ∈ Z.
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Remark 4.2. The tensor product of vector spaces from Definition 1.1, as well as the isomorphisms
from Lemma 1.3, generalize to the world of cochain complexes. See e.g. [BMS22, Section 2.1]
for a collection of the relevant formulas. The most crucial difference is that the map (1.4d)
gets so-called Koszul signs, i.e. τV,W (v ⊗ w) = (−1)|v| |w|w ⊗ v, for v ∈ V i and w ∈ W j , where
|v| = i and |w| = j denote the degrees. These signs make homological algebra a bit “messy” and
cumbersome to work with in practice. M

4.1 Quantum mechanics as a prefactorization algebra

Before we can talk about quantum mechanics, let us start by reviewing some basic concepts from
classical mechanics. A classical particle is described by its trajectory Φ : U → Space , t 7→ Φ(t),
where U ⊆ R1 is a 1-disk, interpreted as time interval, and Space is the space in which the
particle moves. In the simplest case where space is also 1-dimensional, i.e. Space = R1, we have
that the trajectory is simply a real-valued a smooth function Φ ∈ C∞(U) on the time interval
U ⊆ R1. (For physical space R3, the trajectory would be a smooth function taking values in
3-vectors.) The physical trajectory of the particle is selected by solving a differential equation,
called equation of motion, that depends on the system one would like to model. For example, for
the harmonic oscillator, the equation of motion is given by

PΦ :=
(
d2

dt2
+m2

0

)
Φ = 0 , (4.2)

where m2
0 > 0 is some constant parameter. If you know about Lagrangians, note that this is

the Euler-Lagrange equation for L = 1
2

(
dΦ
dt

)2 − m2
0

2 Φ2. We can encode the equation of motion in
terms of the cochain complex

E(U) :=
( (0)

C∞(U)
P //

(1)

C∞(U)
)

(4.3)

that is non-trivial only in degrees 0 and 1, and whose differential is the equation of motion P .
Note that the 0-th cohomology H0E(U) ∼= Ker

(
P : C∞(U) → C∞(U)

)
is precisely the vector

space of solutions of the equation of motion. (With some more efforts, using well-posedness of
the initial value problem, one can prove that the first cohomology of E(U) is trivial.)

Since quantum theory is formulated in terms of quantum observables, and not in terms of
solutions of the equation of motion, our next step is to assign to (4.3) a suitable algebra of
classical observables. The simplest (but good enough for our purposes) choice is to consider the
polynomial algebra on (4.3), which we write as

Obscl(U) := Sym
( (−1)

C∞c (U)
−P
//

(0)

C∞c (U)
)

, (4.4)

where the subscript c denotes smooth functions with compact support, i.e. functions that vanish
outside of some closed interval [a, b] ⊆ U ⊆ R1. By definition, this is the free commutative
algebra (valued in cochain complexes) with generators β ∈ C∞c (U) in degree −1 and generators
α ∈ C∞c (U) in degree 0. Due to the Koszul signs mentioned in Remark 4.2, we have that
αα′ = α′ α, αβ = β α and β β′ = −β′ β. We denote a generic generator (i.e. of degree 0 or −1)
by a symbol like ϕ and the Koszul sign by ϕϕ′ = (−1)|ϕ| |ϕ

′| ϕ′ ϕ. The differential d on (4.4) is
given on the generators by minus the equation of motion operator dβ := −Pβ and by dα = 0. If
you are unfamiliar with the concept of free commutative algebras, it will probably help to know
that a general element in Obscl(U) is a linear combination of elements of the form ϕ1 · · ·ϕk, for
some k ≥ 0. Our first observation is that classical observables form a prefactorization algebra.
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Lemma 4.3. Endow the collection of cochain complexes Obscl(U), for all 1-disks U ⊆ R1, with
the following structure maps

(Obscl)U(U1,...,Un) :

n⊗
i=1

Obscl(Ui) −→ Obscl(U) ,

n⊗
i=1

(
ϕi1 · · ·ϕiki

)
7−→ ϕ11 · · ·ϕnkn , (4.5)

for all tuples ((U1, . . . , Un), U) of mutually disjoint 1-disks in U ⊆ R1. This defines a cochain
complex-valued prefactorization algebra Obscl on X = R1.

Proof. The properties from Definition 2.3 (generalized to cochain complexes) follow immediately
from the fact that Obscl(U) is a commutative algebra in cochain complexes.

The prefactorization algebra for the quantum particle is obtained by quantizing (i.e. deform-
ing) the classical one from Lemma 4.3. The relevant technique is called Batalin-Vilkovisky (BV)
quantization and it is explained in detail in [CG17], see also [BMS22] for an alternative presenta-
tion of the same topic. Without going too much into the details, let me say that the key idea is to
modify the differential d on (4.4) to a new differential dq := d + i ~∆BV that takes into account
quantum effects, which are parametrized by Planck’s constant ~. The so-called BV Laplacian
∆BV acts trivially on order 0 and 1 monomials in (4.4), i.e. ∆BV(1) = ∆BV(α) = ∆BV(β) = 0,
and it is defined on order 2 monomials by

∆BV(αα′) = ∆BV(β β′) = 0 , ∆BV(αβ) =

∫
U
α(t)β(t) dt . (4.6)

One then extends ∆BV as a second-order differential operator to all of (4.4), see e.g. [BMS22,
Definition 2.4] for an explicit formula that we however will not need in this mini-course. An
important feature of the BV Laplacian is that it is local, in the sense that ∆BV(αβ) = 0 whenever
the supports of α and β do not intersect, because in this case the integrand is zero. This allows
one to prove the following result, see e.g. [CG17] or alternatively [BMS22, Section 4.1].

Proposition 4.4. For every 1-disk U ⊆ R1, define the cochain complex Obsq(U) by modifying
the differential d on the cochain complex Obscl(U) from (4.4) to dq := d + i ~∆BV. Endowing
this family of cochain complexes with the same structure maps as in Lemma 4.3 defines a cochain
complex-valued prefactorization algebra Obsq on X = R1.

Remark 4.5. You will now ask for sure how the prefactorization algebra Obsq is related to the
alternative one FA from Example 3.5 that describes a quantum particle in terms of its algebra
of quantum observables A = C[q, p]

/
I. One can show that the 0-th cohomology H0Obsq of the

cochain complex-valued prefactorization algebra from Proposition 4.4 is isomorphic to FA, but
constructing such isomorphism is not so easy. Instead of writing down a full proof, which can be
worked out using the methods from [CG17] or alternatively [BMS22], I would like to explain you
the main idea that allows you to understand roughly how this works. The essential ingredient
is to use that the equation of motion (4.2) for the harmonic oscillator has a well-posed initial
value problem. This allows us to identify (via a so-called quasi-isomorphism) the cochain complex

E(U) in (4.3) with the vector space R2 that describes the initial data
(
Φ(0), dΦ(0)

dt

)
∈ R2. The

0-th cohomology of the classical observables H0Obscl(U) ∼= Sym[q, p] can then be identified with
a polynomial algebra in two variables and one finds that the classical prefactorization algebra
structure from Lemma 4.3 corresponds to multiplication in this polynomial algebra. The effect of
the quantum differential dq := d + i ~∆BV entering the definition of Obsq is that this multiplica-
tion will be deformed, which when computed explicitly leads to a non-commutative multiplication
that satisfies Heisenberg’s commutation relation q p− p q = i ~1. M
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4.2 Universal enveloping algebra as a prefactorization algebra

With a similar geometric construction as in the previous subsection, one can obtain a geometric
model for the prefactorization algebra FUg from Example 3.5 that is determined by the universal
enveloping algebra of a Lie algebra g. I will now sketch this construction and refer you to [CG17,
Section 3.4] or alternatively to [BSV23, Section 4] for the details.

To every 1-disk U ⊆ X = R1, we assign the cochain complex

g⊗ Ω•(U) :=
( (0)

g⊗ Ω0(U)
id⊗ddR

//

(1)

g⊗ Ω1(U)
)

, (4.7)

where Ω0(U) := C∞(U) denotes the vector space of smooth functions (or 0-forms) and Ω1(U) :=
C∞(U) dt the vector space of smooth 1-forms. (A 1-form ω = g dt ∈ Ω1(U) is the combination of
a smooth function g with the 1-dimensional volume element dt. Such objects arise in differential
geometry and play a role in integration theory.) The differential is the so-called de Rham differ-
ential and it is defined by ddRf := df

dt dt. The Lie bracket [ · , · ] of g extends to a Lie bracket on
the cochain complex (4.7) via [

x⊗ α, y ⊗ β
]

= [x, y]⊗ α ∧ β , (4.8)

for all x, y ∈ g and α, β ∈ Ω•(U), where the wedge-product is defined by the multiplication of
C∞(U) and dt ∧ dt = 0. Explicitly,

f ∧ g = f g , f ∧ (g dt) = f g dt = (f dt) ∧ g , (f dt) ∧ (g dt) = f g dt ∧ dt = 0 , (4.9)

for all f, g ∈ C∞(U).

The analog of the classical observables (4.4) in the present example is given by

Fcl(U) := Sym
( (−1)

g⊗ Ω0
c(U)

−id⊗ddR
//

(0)

g⊗ Ω1
c(U)

)
, (4.10)

where the subscript c denotes again compact support. In analogy to Lemma 4.3, we find

Lemma 4.6. Endow the collection of cochain complexes Fcl(U), for all 1-disks U ⊆ R1, with the
following structure maps

(Fcl)U(U1,...,Un) :
n⊗
i=1

Fcl(Ui) −→ Fcl(U) ,
n⊗
i=1

(
ϕi1 · · ·ϕiki

)
7−→ ϕ11 · · ·ϕnkn , (4.11)

for all tuples ((U1, . . . , Un), U) of mutually disjoint 1-disks. This defines a cochain complex-valued
prefactorization algebra Fcl on X = R1.

Concerning the quantization of this prefactorization algebra, we again deform the differential
d of (4.10) to a new differential dq := d+dCE. In contrast to the BV Laplacian from the previous
subsection, we use in the present case the so-called Chevalley-Eilenberg differential dCE that is
determined by the given Lie bracket (4.8). Explicitly, we set dCE(1) = dCE(ϕ) = 0 for the order
0 and 1 monomials, and

dCE

(
ϕϕ′

)
:= (−1)i [ϕ,ϕ′] = (−1)i [x, x′]⊗ α ∧ α′ (4.12)

for the order 2 monomials with ϕ = x ⊗ α ∈ g ⊗ Ωi
c(U) and ϕ′ = x′ ⊗ α′ ∈ g ⊗ Ωj

c(U), with
i, j ∈ {0, 1} denoting the form degree. One then extends dCE to all of (4.10) according to the
construction explained in [CG17, Section 3.4] or [BSV23, Section 4.1]. The following result is
proven in [CG17, Proposition 3.4.1] and also in [BSV23, Proposition 4.7] via different methods.
This proof is again not so easy and hence it will be skipped in this mini-course.
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Proposition 4.7. For every 1-disk U ⊆ R1, define the cochain complex Fq(U) by modifying the
differential d on the cochain complex Fcl(U) from (4.10) to dq := d + dCE. Endowing this family
of cochain complexes with the same structure maps as in Lemma 4.6 defines a cochain complex-
valued prefactorization algebra Fq on X = R1. The 0-th cohomology H0Fq of this prefactorization
algebra is isomorphic to the prefactorization algebra FUg of the universal enveloping algebra from
Example 3.5.

5 Outlook: Current research related to prefactorization algebras

The world of prefactorization algebras is much richer and more beautiful than what we could cover
in this short mini-course. I hope that I was able to give you a useful taster, thereby sparking
interest in this and related subjects. In case you would like to explore this subject further, I
would like to point you to a selection of more advanced topics. Since prefactorization algebras
are relevant in different fields, most notably in algebraic topology, representation theory and
quantum field theory, I will give literature recommendations for each of these research directions.

Algebraic topology: The algebraic topologists’ version of prefactorization algebras is called
factorization homology. This was initiated by Lurie [LurHA] and developed further by Ayala
and Francis [AF15], see also [AF20] for a good review and [Tan20] for excellent lecture
notes. In the language of our notes, what factorization homology does is the following:
1.) It describes locally constant prefactorization algebras on Cartesian spaces Rm, for any
m ≥ 1, substantially generalizing what we have done in Section 3 to higher dimensions
and also to higher categories, e.g. their framework works well also for cochain complexes
and not only for vector spaces. This leads to the famous Em-algebras, also known as
little m-disk algebras from topology. 2.) After understanding these structures locally on
Rm, factorization homology constructs interesting invariants of m-dimensional manifolds by
gluing local data on Rm via a local-to-global construction to global data on the manifold.

Representation theory: Factorization homology can be used to study and understand quan-
tum groups and their representation theory from a geometric perspective. This line of
research was pioneered by Jordan and collaborators, see e.g. [BZBJ18a, BZBJ18b] and also
[GJS23]. Roughly speaking, the link between factorization homology and quantum groups
is that E2-algebras with values in linear categories are braided monoidal categories, which
includes the representation categories of quantum groups. The local-to-global constructions
from [AF15] then can be used to develop new techniques and gain new insights in the study
of quantum groups and their representation theory.

Quantum field theory: The original works of Costello and Gwilliam [CG17, CG21] already
cover a lot of applications of prefactorization algebras to quantum field theory, including el-
egant constructions of non-interacting and perturbatively interacting examples as required
in physics. The prefactorization algebra framework also gives an interesting new perspec-
tive on topological quantum field theories, see e.g. [ES19], and on vertex operator algebras
in conformal quantum field theory, see e.g. [Wil17]. One of my personal interests lies in
understanding the relationship between prefactorization algebras and algebraic quantum
field theory, which is my original field of research. This relationship is by now well un-
derstood, thanks to the works [GR20, BPS20, BMS22], which leads to an interesting and
fruitful cross-fertilization between different communities. Additionally, the combination of
ideas from prefactorization algebras and algebraic quantum field theory leads to interesting
new developments in the latter field, such as e.g. categorified variants of algebraic quantum
field theories [BPSW21].
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6 Exercises

Exercise 6.1. Given two arbitrary vector spaces V and W , consider the vector space V ⊗W :=
K(V ×W )/R defined in (1.3) and the bilinear map V ×W → V ⊗W , (v, w) 7→ v ⊗ w := [v, w]
that assigns equivalence classes. Prove that these data define a tensor product in the sense of
Definition 1.1 by verifying the universal property.

Exercise 6.2. Work through the Construction 1.11 of the universal enveloping algebra Ug of
a Lie algebra g and look up (e.g. via Google) the concepts that you are not familiar with. For
example, is it clear to you what is meant by a Lie algebra morphism or a unital associative
algebra morphism? Once you have done this, verify the universal property of Ug that is stated
in Construction 1.11.

Exercise 6.3. Show that the two alternative definitions of a left module over a Lie algebra g
from Definition 1.13 are indeed equivalent.

Exercise 6.4. Consider a locally constant prefactorization algebra F on X = Rm. Show that
the vector spaces F(U) and F(U ′) that are associated with two arbitrary m-disks U,U ′ ⊆ X are
isomorphic.

Exercise 6.5. Verify that FA from Construction 3.2 satisfies the axioms of a prefactorization
algebra on X = R1 from Definition 2.3.

Exercise 6.6. Try to generalize the Construction 3.2 of FA to prefactorization algebras on higher-
dimensional Cartesian spaces X = Rm, for m ≥ 2. Show that this is possible provided that the
input (A,µ, η) is a commutative unital associative algebra.

Exercise 6.7. Use well-posedness of the initial value problem to prove that the first cohomology
of the cochain complex (4.3) is trivial.

Exercise 6.8. Convince yourself that the geometric construction of the cochain complex-valued
prefactorization algebra Obsq from Subsection 4.1 generalizes to X = Rm, for any dimension
m ≥ 1, if one takes instead of (4.2) the Laplace-type equation P := ∆ + m2

0 :=
∑m

i=1
∂2

∂x2i
+ m2

0.

The resulting higher-dimensional prefactorization algebra defines a simple example of a quantum
field theory, namely the free scalar quantum field on X = Rm.
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