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HI . Construction of simple examples by homological techniques 1L
-

Inthis lecture
,
I explain how to construct a simple class of homotopy AQFTS :

-|Linewquantung#thnes
Our construction is inspired by deniedalgebraic geometry , but it is much

simpler because her linear gauge
theories we can use chain complexes instead of derived studs .

Our construction is a mathematical formalization of the BV- formalism ,
which

I behere has the hollowing advantages :
1.) All steps are described by derived functors ,

hence are compatible
with quasi- isomorphisms.

2.) We do Not need "tricks " like gauge tiling and Nakanishi- Lantrip fields.

3.) We clarify the origin of nonskidtest Poisson structures in Lorentzian signature .

Unfortunately, we can currently treat only linear gauge themes , while
the standard BV- formalism works for perturbative gauge themes .



ourplace ②
• We work in homotogicaldegreeconvenhms , i. e . differentials are of degree -M :

V= ( - -

red V.g-d Vo ←d
'

th ed .
. . ) ⇐ Chik .

K
• The pezfsy.tt#pkxVEp3 is defined by VEDn ⇐ Vn-p and dm? Pd

.

• Given two chain completes V,we Ch# , we have am-appuegso-mpkthom.lv
,W) c- Chik defined by hog (yw)mi= IT Lin ( Vm , Wn+m)

MEZI

and the differential @ELmiVm-oWn-im3miIf.d Lm- Edm Lund : Vm→ wn.e.im?m#
• Note that :

i )c till→W are O-cycles, i.e . fehoICyw1@s.t . Of - O

chainhomotop.us between Tig : V→W are 1-chains be home (Yw)a

s.t. f - g - Oh
- . . and similar for higher chain homotopics .



temple ( tor illustrative purposes, I will focus on linear YM theory)③
Linear Yang - Mills theory on a spacetime ME Loc is specified by the following data :
d) Field complex 7cm) = ( reigned r%'Cm) ): - i-

gauge heeds gauge transformations

(2) Gauge invariant action : SCA) re {Iz DA a* DA
The variation of] of S defines a section of the cotangent bundle

7cm)

¥a,
-

- f
ii.e- riii,

±
..÷÷÷i:ii:*:. )

i. d

Defi The se¥mp6± is the dinar) derived critical locus

Sol .CM) - - . .
. . .

-D FCM)

i Find:L loans
: O
°

O T* FCM)FCM)→



Proper : A model for the solution complex is 4L
Solem -

- ( rEi←Er¥ro )
set At A • *T

Remi Sohn) describes the held content and differentials known than the /BV-form#m.
1-

Sketch of proof : To compute the homotopy pullback, replace the O- section
-

O : FCM)→ T*FCM) = Fcm) * ECM)* by a weakly equivalent fibration .
One way

to do this is to introduce the acyclic complex

D= ( circa iii ) and note that o -9 D-⇒ IR
.

This gives a factorization Ilm) Is FCM) x E CMJ*

of fibration !)
easy
IF

°

Ttm)* CD F
and we can compute Sol CM) by the ordinary pullback

Sol ' " b TY!varg
°

pen, Finis #
*HM
,



them :
The homology groups of the solution complex are i 5L
• Hq (Soun)) E H fer (m) , the stabiliser group of gauge helots

-

-

- Ho (Soun)) E { teeth) : TDA -03 ,
the

gauge orbit space of solutions
¥ -

- H
. , Gol CMD E HII (m) , theobstmch.is/osoloeJdA--f-H.zCSollmD-Hmdrlm)--0 , because ME 112×27 s

h Thesoluhoncomplexsolwcontainsmore-yrehned.cntarnation than the gauge orbit space\
of solutions Holsollml) .
-

These are both steady and derived higher structures.
p 9

Positive degrees negative degrees



ShifthittedP¥ ⑥
Every derived critical locus has a E B -shifted Poisson structure
-

(called anti bracket

See CPTVV for general results in derived algebraic geometry
m BV-formalism)

[and Costello /Gwilliam in the context of QFT . ]
For linear gauge theories , this is simply a chain map

V : Llnl LIM)→ RED

on the dual complex LCM) of linear observables on South) .

Confute by for our dampki Cz)

y• Luh Cio.im#r:iiiEdniiimed.r:cm,
r

• Lcm) Lcm)-s RED

cfc:{TiffinYoichi P duality pairing

Ilm) ④ Soun) ED & cm) Sounded



In our setting where ME Loc is a globally hyperbolic Lorentzian mnt EL
something funny happens :

tern: The canonical inclusion

÷!!!
, ,,,

= (M&m
) # Nadu El Nadira't roam,

c- / E -e
-se

O O

nowise run #
relined him, /

defines a trivial homology class [ i]-O E Ho ( home CL Im) , SolCMITD)) .
Hence

,
also the shifted Poisson structure defines a trivial homology class

[ r ] -O e Ho Choe CLImho Lcm) , RED) ) .

Rene Proving this result uses heavily the solution theory of the
Maxwell operator Td on globally hyperbolic Lorentzian manifolds M . pg



So does this mean that the shitted Poisson structure Cantinadef) 8L
is useless , i.e . without any actual content ?

Not quite ? There exist two distinct, intrinsically Lorentzian, ways to
trivialize E

,
which make use of past future compact support systems :

LCM) is Solem)ti
-

H
.

µ,
Tina

'

II n

¥g¥M
Lpga

Thug a) There exists a unique Cup to contractible choices) conductinghomotopy. GI for Lpytaldl),e.g.
O# ropy,dm)# Npgdmt-dmpcqdme-dropq.IM) t O

id
, tu be 1.a id #id

S{
et R°p4tdM ) Ig- MpeHIM) Td NpcHIM) Id hopeHIM ) to

where Gtf is the retarded / advanced Green 's operator take d
'Alem bertram Diedtold .

b) The difference g. is ipcogt - ige . g- : LCM)→ So LCM)
defines a non - trivial homology class E G] E Ho ( home (LCM) , So Hml)) .



As a consequence, we can define a non- trivial unshilted Poisson structure

re : LIM) ⑧ L Im) ¥8> Lcmhosolcm)
⑤

which is unique up
to contractible choices .

Thin The can quantization
CCR : Poch ,p→ dg Alge

cue) i- TEV
#v

'
-

"""'
n'④v - it Eelv, v

') )
preserves weak equivalences , i.e. it does NOT have to be derived

.

Furthermore
, if re and re tog are homo topic Poisson structures

,

then there exists a zig-zag of weak equivalences in dy Alge
CCR ( HT) E Acy

, ,g,
I CCRIV

, e tog)

-hrwadsil Quantization is consistent in our homological approach .-



Main Theorem : to

F¥Tent Mr> Acm ) : = CCR (L (m) , e ) defines a

semi -strict homotopy AQFT A c- AQFTS ( Toc) .

In more detail
,
the functor A : Loc→ dyAlgo, Saks hes

1) sticttmsteinca.ly :
For every @ n :

M
.→ N) t ( ta : Ma→ N),

the chain map

[ -

i ]µµ, o (Alta ) ⑦ Alta ) ) .: ACM. )⑦Alma) → AIN)

¥mutakr
Is zero .

it ) tomoopytimeshaaxon For every Candy morphism f: U-7N,
the dgAlge - morphism Act) : ACM) -9 ACN) is a weak equivalence .



Summary : ↳
=

• Examples of homotopy AQFTS can be constructed by adapting techniques
from desired algebraic geometry to applications in field theory.

a. At the moment we can do this only for beer (higher) gauge theories ,
because there the problem reduces to basic homological algebra .

a. Even though our approach looks superficially similar to the BV - formalism,
I behere that it has some advantages :

1.) All constructions are desired , i.e . compatible with weak equivalences .

2.) No "tricks
" like gauge hiring and Nakanishi - Lantrip hills needed .

3.) Relationship between trivializations of the shifted Poisson structure

and the unshifted Poisson structure entering CCR - quantization.

•E.perf problems Generalize these constructions to perturbative

quantum gauge theories w/ interactions .

f-End


