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What is derived geometry? (I)

� Traditional frameworks, such as manifolds or schemes, are incapable to
describe certain important geometric objects:

(i) Quotients by non-free group actions:

X/G is in general singular. It also ignores in how many ways points get
identified, e.g.

pt/G = pt independently of G

(ii) Non-transversal intersections:

X1 ×Y X2 is in general singular. It also ignores intersection multiplicities (in
the case of manifolds) and may violate the codimension addition rule, e.g.

X1

X2 X2

X1 X1X2
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What is derived geometry? (II)

� Derived (algebraic) geometry [Lurie; Toën/Vezzosi; Pridham; . . . ] resolves
these issues by introducing a refined concept of space called derived stacks.

� To get some intuition, we have to recall
the functor of points perspective

X : Affop = CAlg→ Set

X

A0

A1

A2

� Derived stacks have a richer functor of points:

Affop = CAlg
_�

����

im
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in
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schemes //

stacks
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∞-stacks
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ts

Grpd
� _

��

dAffop = dgCAlg≤0

derived (∞-)stacks
// ∞Grpd
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Why does one need this in mathematical physics?

� Many problems in mathematical physics require intersections and quotients!

A typical problem is to describe the space of solutions of a variational PDE
(=̂ intersection ddRS = 0), modulo gauge symmetries (=̂ quotient).

Warning: Such applications are differential geometric and ∞-dimensional, so
beyond current DAG technology. (There is recent progress by [Steffens].) It is
nevertheless interesting to study algebraic and finite-dimensional toy-models.

� Predecessors of DAG were successfully used in physics since the 80s!

It is now understood that the BRST/BV/BFV/. . . formalisms from physics
capture formal (perturbative) aspects of derived geometry:{

formal neighborhood of a point

x : pt→ X in a derived stack X

}
ks
Pridham

Lurie +3 L∞-algebra

DAG provides a geometric framework for non-perturbative generalizations.

! Interesting for modern developments in QFT, e.g. in the context of factorization

algebras [Costello/Gwilliam; . . . ] or homotopical algebraic QFT [Benini/AS; . . . ].
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Application 1:

Derived critical locus of a function on a quotient stack
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Scenario

� The following data provides an algebraic and finite-dimensional toy-model for
a field theory with space of fields X, gauge group G and action functional S:

(1) a smooth affine scheme X = SpecA

(2) an action X ×G→ X of a smooth affine group scheme G = SpecH

(3) a function S : [X/G]→ A1 on the quotient stack

[X/G] := colim
(
X X ×Goo
oo X ×G2

oo
oo
oo

· · ·oo
oo
oo

oo )
∈ dSt

� Wanted: Explicit model for the space of critical points of S, i.e. the derived
critical locus

dCrit(S) //

��

[X/G]

0

��

[X/G]
ddRS

// T ∗[X/G]

Rem: The case where G = pt is trivial was worked out by [Vezzosi] and formal
quotient stacks [X/g] for Lie algebras were studied by [Costello/Gwilliam].
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Theorem [Benini, Safronov, AS]

The derived critical locus dCrit(S : [X/G]→ A1) ' [Z/G] is a derived quotient
stack with Z = Spec O•(Z) the derived affine scheme specified by the CDGA

O•(Z) = SymA

(
TA[1]⊕

(
A⊗ g[2]

))
∂a = 0 , ∂v = ιv(d

dRS) , ∂t = −ιρ(t)(λ) ,

for all a ∈ A, derivations v ∈ TA[1] and Lie algebra elements t ∈ g[2]. Here
λ ∈ Ω1(T ∗X) denotes the tautological 1-form and ρ is the induced Lie algebra
action on T ∗X.

Physics note: This result matches the expectations from the BV formalism. In

particular, one clearly recognizes the fields A, the anti-fields TA[1] and the anti-ghosts

g[2]. The ghosts G are encoded non-perturbatively by the quotient stack.

Alexander Schenkel DAG in MathPhys Luxembourg 22 6 / 11



Theorem [Benini, Safronov, AS]

The derived critical locus dCrit(S : [X/G]→ A1) ' [Z/G] is a derived quotient
stack with Z = Spec O•(Z) the derived affine scheme specified by the CDGA

O•(Z) = SymA

(
TA[1]⊕

(
A⊗ g[2]

))
∂a = 0 , ∂v = ιv(d

dRS) , ∂t = −ιρ(t)(λ) ,

for all a ∈ A, derivations v ∈ TA[1] and Lie algebra elements t ∈ g[2]. Here
λ ∈ Ω1(T ∗X) denotes the tautological 1-form and ρ is the induced Lie algebra
action on T ∗X.

Physics note: This result matches the expectations from the BV formalism. In

particular, one clearly recognizes the fields A, the anti-fields TA[1] and the anti-ghosts

g[2]. The ghosts G are encoded non-perturbatively by the quotient stack.

Alexander Schenkel DAG in MathPhys Luxembourg 22 6 / 11



Some remarks and observations

(1) dCrit(S) carries a canonical (−1)-shifted symplectic structure that can be
computed explicitly via intersections of derived Lagrangians.

(2) dCrit(S : [X/G]→ A1) can be understood as a shifted symplectic reduction
of the derived critical locus dCrit(S̃ : X → A1) without gauge quotient. This
was worked out independently and in much detail by [Anel/Calaque].

(3) Our result can be compared to the perturbative BV formalism:

O•
(
dCrit(S)

)
' O•

(
[Z/G]

)
' TotΠ

normalized group cochains︷ ︸︸ ︷
N•
(
G,O•(Z)

)
i.g. 6' van Est map

��

O•
(
BV(S)

)
' O•

(
[Z/g]

)
' TotΠ CE•

(
g,O•(Z)

)︸ ︷︷ ︸
Chevalley-Eilenberg cochains

(4) dCrit(S) ' [Z/G] is i.g. not affine, i.e. not determined by O•
(
dCrit(S)

)
.

Need richer algebraic invariant such as SM dg-category of modules

QCoh
(
dCrit(S)

)
' O•(Z)dgModG
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Application 2:

Quantization of derived cotangent stacks
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Scenario

� The following data provides an algebraic and finite-dimensional toy-model for
the canonical phase space of a 2nd-order gauge theory such as Yang-Mills:

(1) Given a smooth affine scheme X = SpecA with an action X ×G→ X of a
smooth affine group scheme G = SpecH, consider the derived cotangent stack

T ∗[X/G]

Safronov︷︸︸︷
' [T ∗X//G]︸ ︷︷ ︸

symplectic reduction

' [µ−1(0)/G]

One can work out an explicit model for the derived affine scheme µ−1(0)

O•
(
µ−1(0)

)
= SymA

(
A⊗ g[1]

µ∗
// TA

)

(2) There exists a canonical 0-shifted Poisson structure on T ∗[X/G] [Calaque]

� Wanted: Quantization of T ∗[X/G] along this Poisson structure. Find an
explicit model for the quantized E0-monoidal (= pointed) dg-category

QCoh
(
T ∗[X/G]

)
~ = ?
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Strategy

Turn the abstract deformation theoretic arguments of [Pridham] into an explicit
construction. Let me sketch the key ideas:

(1) Resolve T ∗[X/G] ' [µ−1(0)/G] by a diagram of Lie algebra quotients

[µ−1(0)/g]
[
µ−1(0)×G/g⊕ g

]
oo
oo · · ·oo

oo
oo

This turns the global problem into a family of local stacky affine problems.

(2) Quantize level-wise via differential operators

CE•
(
g,O•(µ−1(0))

)
~

//
// CE•

(
g⊕ g,O•(µ−1(0)×G)

)
~

//
//
// · · ·

and pass over to dg-categories of modules

~ :=
(

CE•(g,O•(µ−1(0)))~
dgMod //

// CE•(g⊕g,O•(µ−1(0)×G))~
dgMod

//
//
// · · ·

)
(3) Obtain global quantization by computing homotopy limit of dg-categories

QCoh
(
T ∗[X/G]

)
~ := holim~ ∈ dgCat
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Theorem [Benini, Pridham, AS]

For G reductive, the following dg-category is a model for QCoh
(
T ∗[X/G]

)
~.

� Objects: Triples (E•,∇,Ψ) consisting of

- a G-eqv. O(X)[[~]]-dg-module E•

- a G-eqv. dg-connection ∇ : E• → Ω1(X)[[~]]⊗O(X)[[~]] E• with respect to

~ ddR, i.e. ∇(a s) = ~ddRa⊗ s+ a∇(s)

- a G-eqv. graded module map Ψ : g[1]⊗ E] → E]

These data have to satisfy the following conditions

∇v∇v′ −∇v′ ∇v = ~∇[v,v′] , ∇v Ψt −Ψt∇v = 0

Ψt Ψt′ + Ψt′ Ψt = 0 ∂Ψt + Ψt ∂ = ∇µ∗(t) + ~ ρ(t)

� Morphisms: homO(X)[[~]](E•, E ′•) preserving G, ∇ and Ψ strictly

Physics note: The dg-modules E• play the role of “spaces of wave functions”. The

G-action encodes the ghosts. The connection ∇ describes the canonical momentum

operators and Ψ defines an action of the anti-ghosts. The ~ corrections have the same

pattern as the canonical commutation relations in the formal (perturbative) setting.
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Conclusions and outlook

� DAG is a modern and powerful geometric framework that allows one to deal
with “bad” quotients and intersections

� In the context of MathPhys, it provides a geometric and non-perturbative
refinement of the celebrated BRST/BV/BFV/. . . formalisms

� In this talk I’ve presented two examples in which the quite abstract (at least
for me) constructions in DAG can be worked out fully explicitly:

(1) derived critical locus of a function S : [X/G]→ A1 on a quotient stack

(2) quantization of a derived cotangent stack T ∗[X/G] along the canonical
0-shifted Poisson structure

� I would like to do some future work in the following directions:

1. “Extrapolate” our results to field theoretic examples (needs functional analysis
/) and study simple examples of non-perturbative quantum gauge theories.

2. Study and work out further examples of deformation quantizations of
unshifted and also shifted Poisson structures on derived stacks.

Interesting candidate: [pt/G] for a higher group  higher quantum groups?
[work in progress with Laugwitz].
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