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Introduction and motivation

� Common feature of (all?) approaches to QFT:

Geometry Algebra
QFT

� Why interesting?

(1) QFT is a tool to learn something about geometry, e.g. invariants of manifolds
via TQFT or Factorization Homology

(2) QFT leads to interesting algebraic structures that are “parametrized” by
geometries, e.g. En-algebras

� AQFT is obtained from physically relevant choices for geometry and algebra:

• Lorentzian manifolds = Einstein’s general relativity

• associative and unital algebras = quantum mechanics

� Goals of this talk:

1. Brief introduction to (the algebraic structure of) AQFT

2. Explain why gauge theory requires higher categorical structures

3. Survey of our homotopical AQFT program for quantum gauge theories
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Algebraic quantum field theory
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What is an AQFT?

� Spacetime := oriented and time-oriented globally
hyperbolic Lorentzian manifold N

� Spacetime embedding := (time-)orientation
preserving isometric embedding f : M → N s.t.
f(M) ⊆ N open and causally convex

� Denote by Loc the category of spacetimes and
spacetime embeddings

time

N

Σ

MM1 M2

M

Σ

Def: An AQFT is a functor A : Loc −→ AlgAs(VecK) to the category of
associative and unital K-algebras that satisfies:

(i) Einstein causality: If M1
f1−→ N

f2←−M2 causally disjoint, then

µN ◦
(
A(f1)⊗ A(f2)

)
= µop

N ◦
(
A(f1)⊗ A(f2)

)
: A(M1)⊗ A(M2) −→ A(N)

(ii) Time-slice: If f : M → N is Cauchy morphism, then

A(f) : A(M)
∼=−→ A(N)

 AQFT links Lorentzian geometry to algebraic structure
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AQFTs and colored operads

� The definition of AQFT allows for the following generalizations:

• VecK  cocomplete closed symmetric monoidal category T

• Loc, causally disjoint and Cauchy  orthogonal category C = (C,⊥)

Def: AQFT(C,T) denotes the category of T-valued AQFTs on C

Thm: (i) There exists a colored operad OC such that AQFT(C,T) ' AlgO
C

(T)

(ii) Every orthogonal functor F : C→ D defines an adjunction

F! : AQFT(C,T) // AQFT(D,T) : F ∗oo

� This is extremely useful for local-to-global constructions:

• Let j : Loc� → Loc be full orthogonal subcat of “diamonds” (M ∼= Rm)

• We get extension-restriction adjunction

ext = j! : AQFT(Loc�,T) // AQFT(Loc,T) : j∗ = resoo

• Descent condition: A ∈ AQFT(Loc,T) is j-local iff εA : ext resA
∼=−→ A

Ex: Linear Klein-Gordon theory is j-local (uses also results by [Lang])
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Higher structures in gauge theory
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What is a gauge theory?

“Ordinary” field theory:

Gauge theory:

Set/Space of fields

Grpd/Stack of fields

Φ

Φ′

Φ′′

A

A′

A′′

g

g
′

g′′

Ex: Groupoid of principal G-bundles with connection on U ∼= Rm

BGcon(U) =

Obj: A ∈ Ω1(U, g)

Mor: A
g∈C∞(U,G)

// A / g = g−1Ag + g−1dg

Invariant information:

• π0

(
BGcon(U)

)
= Ω1(U, g)/C∞(U,G) (“gauge orbit space”)

• π1

(
BGcon(U), A

)
= {g ∈ C∞(U,G) : A = A / g} (stabilizers/“loops”)

! Grpd is a 2-category (or model category) with weak equivalences the
categorical equivalences ⇒ need for higher (or derived) functors!
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Why are these higher structures important?

1. π1 encodes essential information of the gauge theory:

Consider structure group G = U(1) or R. Then

π0
(
BGcon(U)

) ∼= Ω1(U)/dΩ0(U)︸ ︷︷ ︸
doesn’t see G

, π1
(
BGcon(U), A

) ∼= G︸ ︷︷ ︸
sees G

2. Higher structures are crucial for descent:

Let M be manifold with good open cover {Ui ⊆M}. Then

holim
( ∏

iBGcon(Ui)
//
//
∏
ij BGcon(Uij) ////

//

//

∏
ijk BGcon(Uijk) //

//

//

//
· · ·
)

is the groupoid of all principal G-bundles with connection on M

3. π1 detects “fake” gauge symmetries:

Let M be manifold and consider groupoid

P (M) =

Obj: (Φ1,Φ2) ∈ C∞(M)× C∞(M)

Mor: (Φ1,Φ2)
ε∈C∞(M)

// (Φ1 + ε,Φ2 + ε)

Because all π1’s are trivial, this is a “fake” gauge symmetry. Indeed, there is
an equivalence P (M)→ C∞(M) , (Φ1,Φ2) 7→ Φ1 − Φ2 to the scalar field.

Alexander Schenkel ∞AQFT York 19 6 / 13



Why are these higher structures important?

1. π1 encodes essential information of the gauge theory:

Consider structure group G = U(1) or R. Then

π0
(
BGcon(U)

) ∼= Ω1(U)/dΩ0(U)︸ ︷︷ ︸
doesn’t see G

, π1
(
BGcon(U), A

) ∼= G︸ ︷︷ ︸
sees G

2. Higher structures are crucial for descent:

Let M be manifold with good open cover {Ui ⊆M}. Then

holim
( ∏

iBGcon(Ui)
//
//
∏
ij BGcon(Uij) ////

//

//

∏
ijk BGcon(Uijk) //

//

//

//
· · ·
)

is the groupoid of all principal G-bundles with connection on M

3. π1 detects “fake” gauge symmetries:

Let M be manifold and consider groupoid

P (M) =

Obj: (Φ1,Φ2) ∈ C∞(M)× C∞(M)

Mor: (Φ1,Φ2)
ε∈C∞(M)

// (Φ1 + ε,Φ2 + ε)

Because all π1’s are trivial, this is a “fake” gauge symmetry. Indeed, there is
an equivalence P (M)→ C∞(M) , (Φ1,Φ2) 7→ Φ1 − Φ2 to the scalar field.

Alexander Schenkel ∞AQFT York 19 6 / 13



Why are these higher structures important?

1. π1 encodes essential information of the gauge theory:

Consider structure group G = U(1) or R. Then

π0
(
BGcon(U)

) ∼= Ω1(U)/dΩ0(U)︸ ︷︷ ︸
doesn’t see G

, π1
(
BGcon(U), A

) ∼= G︸ ︷︷ ︸
sees G

2. Higher structures are crucial for descent:

Let M be manifold with good open cover {Ui ⊆M}. Then

holim
( ∏

iBGcon(Ui)
//
//
∏
ij BGcon(Uij) ////

//

//

∏
ijk BGcon(Uijk) //

//

//

//
· · ·
)

is the groupoid of all principal G-bundles with connection on M

3. π1 detects “fake” gauge symmetries:

Let M be manifold and consider groupoid

P (M) =

Obj: (Φ1,Φ2) ∈ C∞(M)× C∞(M)

Mor: (Φ1,Φ2)
ε∈C∞(M)

// (Φ1 + ε,Φ2 + ε)

Because all π1’s are trivial, this is a “fake” gauge symmetry. Indeed, there is
an equivalence P (M)→ C∞(M) , (Φ1,Φ2) 7→ Φ1 − Φ2 to the scalar field.

Alexander Schenkel ∞AQFT York 19 6 / 13



Why are these higher structures important?

1. π1 encodes essential information of the gauge theory:

Consider structure group G = U(1) or R. Then

π0
(
BGcon(U)

) ∼= Ω1(U)/dΩ0(U)︸ ︷︷ ︸
doesn’t see G

, π1
(
BGcon(U), A

) ∼= G︸ ︷︷ ︸
sees G

2. Higher structures are crucial for descent:

Let M be manifold with good open cover {Ui ⊆M}. Then

holim
( ∏

iBGcon(Ui)
//
//
∏
ij BGcon(Uij) ////

//

//

∏
ijk BGcon(Uijk) //

//

//

//
· · ·
)

is the groupoid of all principal G-bundles with connection on M

3. π1 detects “fake” gauge symmetries:

Let M be manifold and consider groupoid

P (M) =

Obj: (Φ1,Φ2) ∈ C∞(M)× C∞(M)

Mor: (Φ1,Φ2)
ε∈C∞(M)

// (Φ1 + ε,Φ2 + ε)

Because all π1’s are trivial, this is a “fake” gauge symmetry. Indeed, there is
an equivalence P (M)→ C∞(M) , (Φ1,Φ2) 7→ Φ1 − Φ2 to the scalar field.

Alexander Schenkel ∞AQFT York 19 6 / 13



Why are these higher structures important?

1. π1 encodes essential information of the gauge theory:

Consider structure group G = U(1) or R. Then

π0
(
BGcon(U)

) ∼= Ω1(U)/dΩ0(U)︸ ︷︷ ︸
doesn’t see G

, π1
(
BGcon(U), A

) ∼= G︸ ︷︷ ︸
sees G

2. Higher structures are crucial for descent:

Let M be manifold with good open cover {Ui ⊆M}. Then

holim
( ∏

iBGcon(Ui)
//
//
∏
ij BGcon(Uij) ////

//

//

∏
ijk BGcon(Uijk) //

//

//

//
· · ·
)

is the groupoid of all principal G-bundles with connection on M

3. π1 detects “fake” gauge symmetries:

Let M be manifold and consider groupoid

P (M) =

Obj: (Φ1,Φ2) ∈ C∞(M)× C∞(M)

Mor: (Φ1,Φ2)
ε∈C∞(M)

// (Φ1 + ε,Φ2 + ε)

Because all π1’s are trivial, this is a “fake” gauge symmetry. Indeed, there is
an equivalence P (M)→ C∞(M) , (Φ1,Φ2) 7→ Φ1 − Φ2 to the scalar field.

Alexander Schenkel ∞AQFT York 19 6 / 13



Why are these higher structures important?

1. π1 encodes essential information of the gauge theory:

Consider structure group G = U(1) or R. Then

π0
(
BGcon(U)

) ∼= Ω1(U)/dΩ0(U)︸ ︷︷ ︸
doesn’t see G

, π1
(
BGcon(U), A

) ∼= G︸ ︷︷ ︸
sees G

2. Higher structures are crucial for descent:

Let M be manifold with good open cover {Ui ⊆M}. Then

holim
( ∏

iBGcon(Ui)
//
//
∏
ij BGcon(Uij) ////

//

//

∏
ijk BGcon(Uijk) //

//

//

//
· · ·
)

is the groupoid of all principal G-bundles with connection on M

3. π1 detects “fake” gauge symmetries:

Let M be manifold and consider groupoid

P (M) =

Obj: (Φ1,Φ2) ∈ C∞(M)× C∞(M)

Mor: (Φ1,Φ2)
ε∈C∞(M)

// (Φ1 + ε,Φ2 + ε)

Because all π1’s are trivial, this is a “fake” gauge symmetry. Indeed, there is
an equivalence P (M)→ C∞(M) , (Φ1,Φ2) 7→ Φ1 − Φ2 to the scalar field.

Alexander Schenkel ∞AQFT York 19 6 / 13



Why are these higher structures important?

1. π1 encodes essential information of the gauge theory:

Consider structure group G = U(1) or R. Then

π0
(
BGcon(U)

) ∼= Ω1(U)/dΩ0(U)︸ ︷︷ ︸
doesn’t see G

, π1
(
BGcon(U), A

) ∼= G︸ ︷︷ ︸
sees G

2. Higher structures are crucial for descent:

Let M be manifold with good open cover {Ui ⊆M}. Then

holim
( ∏

iBGcon(Ui)
//
//
∏
ij BGcon(Uij) ////

//

//

∏
ijk BGcon(Uijk) //

//

//

//
· · ·
)

is the groupoid of all principal G-bundles with connection on M

3. π1 detects “fake” gauge symmetries:

Let M be manifold and consider groupoid

P (M) =

Obj: (Φ1,Φ2) ∈ C∞(M)× C∞(M)

Mor: (Φ1,Φ2)
ε∈C∞(M)

// (Φ1 + ε,Φ2 + ε)

Because all π1’s are trivial, this is a “fake” gauge symmetry.

Indeed, there is
an equivalence P (M)→ C∞(M) , (Φ1,Φ2) 7→ Φ1 − Φ2 to the scalar field.

Alexander Schenkel ∞AQFT York 19 6 / 13



Why are these higher structures important?

1. π1 encodes essential information of the gauge theory:

Consider structure group G = U(1) or R. Then

π0
(
BGcon(U)

) ∼= Ω1(U)/dΩ0(U)︸ ︷︷ ︸
doesn’t see G

, π1
(
BGcon(U), A

) ∼= G︸ ︷︷ ︸
sees G

2. Higher structures are crucial for descent:

Let M be manifold with good open cover {Ui ⊆M}. Then

holim
( ∏

iBGcon(Ui)
//
//
∏
ij BGcon(Uij) ////

//

//

∏
ijk BGcon(Uijk) //

//

//

//
· · ·
)

is the groupoid of all principal G-bundles with connection on M

3. π1 detects “fake” gauge symmetries:

Let M be manifold and consider groupoid

P (M) =

Obj: (Φ1,Φ2) ∈ C∞(M)× C∞(M)

Mor: (Φ1,Φ2)
ε∈C∞(M)

// (Φ1 + ε,Φ2 + ε)

Because all π1’s are trivial, this is a “fake” gauge symmetry. Indeed, there is
an equivalence P (M)→ C∞(M) , (Φ1,Φ2) 7→ Φ1 − Φ2 to the scalar field.

Alexander Schenkel ∞AQFT York 19 6 / 13



Smooth cochain algebras on stacks

� To study geometry of gauge fields, one
needs “smooth groupoids” a.k.a. stacks

� A stack is a presheaf X : Cartop → Grpd
satisfying homotopical descent

X

R0

R1

R2

� (A)QFT needs “observable algebras”, but what are functions on stacks?

� Smooth normalized cochains:

Stacks

N∗∞(−,K)

**

N∗(−,K)
// PSh(Cart,ChK)

Map∞(−,K)
// Chop

K

Prop: (i) N∗∞(−,K) is left Quillen functor, i.e. left derived functor LN∗∞(−,K) exists

(ii) LN∗∞(−,K) : Stacks→ AlgE∞(ChK)op takes values in E∞-algebras

! Main observation: Classical observables in a gauge theory are described by
dg-algebras that are only homotopy-coherently commutative!
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Higher structures in AQFT
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Homotopy AQFTs: Definition and basic properties

� Recall AQFT(C,T) = AlgOC
(T) requires choice of target category T

� Take T = ChK to include dg-algebras of observables of a gauge theory!

� But what about homotopy coherent algebraic structures (e.g. E∞-algebras)?

Def: A ChK-valued homotopy AQFT on C is an algebra over any Σ-cofibrant

resolution OC,∞
∼
� OC of the AQFT dg-operad OC ∈ Op(ChK).

AQFT∞(C) := AlgOC,∞
(ChK) denotes category of homotopy AQFTs.

Prop: (i) AQFT∞(C) is a model category with weak equivalences the natural
quasi-isomorphisms

(ii) AQFT∞(C) does not depend on the choice of resolution (up to zig-zags of
Quillen equivalences)

(iii) If charK = 0, then id : OC

∼
� OC is Σ-cofibrant resolution

⇒ all homotopy AQFTs in charK = 0 (i.e. in physics) can be strictified

Ex: Component-wise tensor product OC ⊗ E∞
∼
� OC ⊗ Com ∼= OC with the

Barratt-Eccles operad defines a Σ-cofibrant resolution.

Smooth normalized cochain algebras on (a diagram X : Cop → Stacks of)
stacks leads to homotopy AQFTs of this type.

Alexander Schenkel ∞AQFT York 19 8 / 13



Homotopy AQFTs: Definition and basic properties

� Recall AQFT(C,T) = AlgOC
(T) requires choice of target category T

� Take T = ChK to include dg-algebras of observables of a gauge theory!

� But what about homotopy coherent algebraic structures (e.g. E∞-algebras)?

Def: A ChK-valued homotopy AQFT on C is an algebra over any Σ-cofibrant

resolution OC,∞
∼
� OC of the AQFT dg-operad OC ∈ Op(ChK).

AQFT∞(C) := AlgOC,∞
(ChK) denotes category of homotopy AQFTs.

Prop: (i) AQFT∞(C) is a model category with weak equivalences the natural
quasi-isomorphisms

(ii) AQFT∞(C) does not depend on the choice of resolution (up to zig-zags of
Quillen equivalences)

(iii) If charK = 0, then id : OC

∼
� OC is Σ-cofibrant resolution

⇒ all homotopy AQFTs in charK = 0 (i.e. in physics) can be strictified

Ex: Component-wise tensor product OC ⊗ E∞
∼
� OC ⊗ Com ∼= OC with the

Barratt-Eccles operad defines a Σ-cofibrant resolution.

Smooth normalized cochain algebras on (a diagram X : Cop → Stacks of)
stacks leads to homotopy AQFTs of this type.

Alexander Schenkel ∞AQFT York 19 8 / 13



Homotopy AQFTs: Definition and basic properties

� Recall AQFT(C,T) = AlgOC
(T) requires choice of target category T

� Take T = ChK to include dg-algebras of observables of a gauge theory!

� But what about homotopy coherent algebraic structures (e.g. E∞-algebras)?

Def: A ChK-valued homotopy AQFT on C is an algebra over any Σ-cofibrant

resolution OC,∞
∼
� OC of the AQFT dg-operad OC ∈ Op(ChK).

AQFT∞(C) := AlgOC,∞
(ChK) denotes category of homotopy AQFTs.

Prop: (i) AQFT∞(C) is a model category with weak equivalences the natural
quasi-isomorphisms

(ii) AQFT∞(C) does not depend on the choice of resolution (up to zig-zags of
Quillen equivalences)

(iii) If charK = 0, then id : OC

∼
� OC is Σ-cofibrant resolution

⇒ all homotopy AQFTs in charK = 0 (i.e. in physics) can be strictified

Ex: Component-wise tensor product OC ⊗ E∞
∼
� OC ⊗ Com ∼= OC with the

Barratt-Eccles operad defines a Σ-cofibrant resolution.

Smooth normalized cochain algebras on (a diagram X : Cop → Stacks of)
stacks leads to homotopy AQFTs of this type.

Alexander Schenkel ∞AQFT York 19 8 / 13



Homotopy AQFTs: Definition and basic properties

� Recall AQFT(C,T) = AlgOC
(T) requires choice of target category T

� Take T = ChK to include dg-algebras of observables of a gauge theory!

� But what about homotopy coherent algebraic structures (e.g. E∞-algebras)?

Def: A ChK-valued homotopy AQFT on C is an algebra over any Σ-cofibrant

resolution OC,∞
∼
� OC of the AQFT dg-operad OC ∈ Op(ChK).

AQFT∞(C) := AlgOC,∞
(ChK) denotes category of homotopy AQFTs.

Prop: (i) AQFT∞(C) is a model category with weak equivalences the natural
quasi-isomorphisms

(ii) AQFT∞(C) does not depend on the choice of resolution (up to zig-zags of
Quillen equivalences)

(iii) If charK = 0, then id : OC

∼
� OC is Σ-cofibrant resolution

⇒ all homotopy AQFTs in charK = 0 (i.e. in physics) can be strictified

Ex: Component-wise tensor product OC ⊗ E∞
∼
� OC ⊗ Com ∼= OC with the

Barratt-Eccles operad defines a Σ-cofibrant resolution.

Smooth normalized cochain algebras on (a diagram X : Cop → Stacks of)
stacks leads to homotopy AQFTs of this type.

Alexander Schenkel ∞AQFT York 19 8 / 13



Homotopy AQFTs: Definition and basic properties

� Recall AQFT(C,T) = AlgOC
(T) requires choice of target category T

� Take T = ChK to include dg-algebras of observables of a gauge theory!

� But what about homotopy coherent algebraic structures (e.g. E∞-algebras)?

Def: A ChK-valued homotopy AQFT on C is an algebra over any Σ-cofibrant

resolution OC,∞
∼
� OC of the AQFT dg-operad OC ∈ Op(ChK).

AQFT∞(C) := AlgOC,∞
(ChK) denotes category of homotopy AQFTs.

Prop: (i) AQFT∞(C) is a model category with weak equivalences the natural
quasi-isomorphisms

(ii) AQFT∞(C) does not depend on the choice of resolution (up to zig-zags of
Quillen equivalences)

(iii) If charK = 0, then id : OC

∼
� OC is Σ-cofibrant resolution

⇒ all homotopy AQFTs in charK = 0 (i.e. in physics) can be strictified

Ex: Component-wise tensor product OC ⊗ E∞
∼
� OC ⊗ Com ∼= OC with the

Barratt-Eccles operad defines a Σ-cofibrant resolution.

Smooth normalized cochain algebras on (a diagram X : Cop → Stacks of)
stacks leads to homotopy AQFTs of this type.

Alexander Schenkel ∞AQFT York 19 8 / 13



Homotopy AQFTs: Definition and basic properties

� Recall AQFT(C,T) = AlgOC
(T) requires choice of target category T

� Take T = ChK to include dg-algebras of observables of a gauge theory!

� But what about homotopy coherent algebraic structures (e.g. E∞-algebras)?

Def: A ChK-valued homotopy AQFT on C is an algebra over any Σ-cofibrant

resolution OC,∞
∼
� OC of the AQFT dg-operad OC ∈ Op(ChK).

AQFT∞(C) := AlgOC,∞
(ChK) denotes category of homotopy AQFTs.

Prop: (i) AQFT∞(C) is a model category with weak equivalences the natural
quasi-isomorphisms

(ii) AQFT∞(C) does not depend on the choice of resolution (up to zig-zags of
Quillen equivalences)

(iii) If charK = 0, then id : OC

∼
� OC is Σ-cofibrant resolution

⇒ all homotopy AQFTs in charK = 0 (i.e. in physics) can be strictified

Ex: Component-wise tensor product OC ⊗ E∞
∼
� OC ⊗ Com ∼= OC with the

Barratt-Eccles operad defines a Σ-cofibrant resolution.

Smooth normalized cochain algebras on (a diagram X : Cop → Stacks of)
stacks leads to homotopy AQFTs of this type.

Alexander Schenkel ∞AQFT York 19 8 / 13



Homotopy AQFTs: Definition and basic properties

� Recall AQFT(C,T) = AlgOC
(T) requires choice of target category T

� Take T = ChK to include dg-algebras of observables of a gauge theory!

� But what about homotopy coherent algebraic structures (e.g. E∞-algebras)?

Def: A ChK-valued homotopy AQFT on C is an algebra over any Σ-cofibrant

resolution OC,∞
∼
� OC of the AQFT dg-operad OC ∈ Op(ChK).

AQFT∞(C) := AlgOC,∞
(ChK) denotes category of homotopy AQFTs.

Prop: (i) AQFT∞(C) is a model category with weak equivalences the natural
quasi-isomorphisms

(ii) AQFT∞(C) does not depend on the choice of resolution (up to zig-zags of
Quillen equivalences)

(iii) If charK = 0, then id : OC

∼
� OC is Σ-cofibrant resolution

⇒ all homotopy AQFTs in charK = 0 (i.e. in physics) can be strictified

Ex: Component-wise tensor product OC ⊗ E∞
∼
� OC ⊗ Com ∼= OC with the

Barratt-Eccles operad defines a Σ-cofibrant resolution.

Smooth normalized cochain algebras on (a diagram X : Cop → Stacks of)
stacks leads to homotopy AQFTs of this type.

Alexander Schenkel ∞AQFT York 19 8 / 13



Homotopy AQFTs: Definition and basic properties

� Recall AQFT(C,T) = AlgOC
(T) requires choice of target category T

� Take T = ChK to include dg-algebras of observables of a gauge theory!

� But what about homotopy coherent algebraic structures (e.g. E∞-algebras)?

Def: A ChK-valued homotopy AQFT on C is an algebra over any Σ-cofibrant

resolution OC,∞
∼
� OC of the AQFT dg-operad OC ∈ Op(ChK).

AQFT∞(C) := AlgOC,∞
(ChK) denotes category of homotopy AQFTs.

Prop: (i) AQFT∞(C) is a model category with weak equivalences the natural
quasi-isomorphisms

(ii) AQFT∞(C) does not depend on the choice of resolution (up to zig-zags of
Quillen equivalences)

(iii) If charK = 0, then id : OC

∼
� OC is Σ-cofibrant resolution

⇒ all homotopy AQFTs in charK = 0 (i.e. in physics) can be strictified

Ex: Component-wise tensor product OC ⊗ E∞
∼
� OC ⊗ Com ∼= OC with the

Barratt-Eccles operad defines a Σ-cofibrant resolution.

Smooth normalized cochain algebras on (a diagram X : Cop → Stacks of)
stacks leads to homotopy AQFTs of this type.

Alexander Schenkel ∞AQFT York 19 8 / 13



Homotopy AQFTs: Definition and basic properties

� Recall AQFT(C,T) = AlgOC
(T) requires choice of target category T

� Take T = ChK to include dg-algebras of observables of a gauge theory!

� But what about homotopy coherent algebraic structures (e.g. E∞-algebras)?

Def: A ChK-valued homotopy AQFT on C is an algebra over any Σ-cofibrant

resolution OC,∞
∼
� OC of the AQFT dg-operad OC ∈ Op(ChK).

AQFT∞(C) := AlgOC,∞
(ChK) denotes category of homotopy AQFTs.

Prop: (i) AQFT∞(C) is a model category with weak equivalences the natural
quasi-isomorphisms

(ii) AQFT∞(C) does not depend on the choice of resolution (up to zig-zags of
Quillen equivalences)

(iii) If charK = 0, then id : OC

∼
� OC is Σ-cofibrant resolution

⇒ all homotopy AQFTs in charK = 0 (i.e. in physics) can be strictified

Ex: Component-wise tensor product OC ⊗ E∞
∼
� OC ⊗ Com ∼= OC with the

Barratt-Eccles operad defines a Σ-cofibrant resolution.

Smooth normalized cochain algebras on (a diagram X : Cop → Stacks of)
stacks leads to homotopy AQFTs of this type.

Alexander Schenkel ∞AQFT York 19 8 / 13



Homotopy AQFTs: Definition and basic properties

� Recall AQFT(C,T) = AlgOC
(T) requires choice of target category T

� Take T = ChK to include dg-algebras of observables of a gauge theory!

� But what about homotopy coherent algebraic structures (e.g. E∞-algebras)?

Def: A ChK-valued homotopy AQFT on C is an algebra over any Σ-cofibrant

resolution OC,∞
∼
� OC of the AQFT dg-operad OC ∈ Op(ChK).

AQFT∞(C) := AlgOC,∞
(ChK) denotes category of homotopy AQFTs.

Prop: (i) AQFT∞(C) is a model category with weak equivalences the natural
quasi-isomorphisms

(ii) AQFT∞(C) does not depend on the choice of resolution (up to zig-zags of
Quillen equivalences)

(iii) If charK = 0, then id : OC

∼
� OC is Σ-cofibrant resolution

⇒ all homotopy AQFTs in charK = 0 (i.e. in physics) can be strictified

Ex: Component-wise tensor product OC ⊗ E∞
∼
� OC ⊗ Com ∼= OC with the

Barratt-Eccles operad defines a Σ-cofibrant resolution.

Smooth normalized cochain algebras on (a diagram X : Cop → Stacks of)
stacks leads to homotopy AQFTs of this type.

Alexander Schenkel ∞AQFT York 19 8 / 13



Example: Linear Yang-Mills as a homotopy AQFT

� Linear gauge theory: (derived) stacks  chain complexes ChK

� Yang-Mills with structure group R is defined on M ∈ Loc by

(1) Field complex F(M) =
( (0)

Ω1(M)
(1)

Ω0(M)
doo

)
(2) Action functional S(A) = 1

2

∫
M

dA ∧ ∗dA

� Variation of action defines section of cotangent bundle

F(M)

δvS
��

T ∗F(M)

=


0

0
��

Ω1(M)
0oo

(id,δd)
��

Ω0(M)
doo

id
��

Ω0(M) Ω1(M)× Ω1(M)
−δπ2

oo Ω0(M)
ι1d
oo


Def: The solution complex is defined as the (linear)

derived critical locus of the action S, i.e. the
following homotopy pullback in ChK

Sol(M)

��

// F(M)
h

δvS
��

F(M)
0
// T ∗F(M)

Prop: Sol(M) =
( (−2)

Ω0(M)
(−1)

Ω1(M)
δoo

(0)

Ω1(M)
δdoo

(1)

Ω0(M)
doo

)
Rem: Interpretation of Sol(M) in terms of BRST/BV formalism from physics
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A
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C
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doo
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Example: Linear Yang-Mills as a homotopy AQFT II

� Every derived critical locus carries a [1]-shifted Poisson structure, explicitly:

• Smooth dual L(M) =
( (−1)

Ω0
c(M)

(0)

Ω1
c(M)

−δ
oo

(1)

Ω1
c(M)

δdoo
(2)

Ω0
c(M)

−d
oo

)
• Canonical inclusion j : L(M)

⊆−→ Lpc/fc(M) −→ Sol(M)[1]

• Shifted Poisson structure Υ : L(M)⊗ L(M)
id⊗j−→ L(M)⊗Sol(M)[1]

ev−→ R[1]

Thm: (i) ∃ (unique up to homotopy) contracting homotopy G± for Lpc/fc(M), e.g.

0

0

��

0

$$

Ω0
pc/fc(M)

0oo

id

��

−G±
�

d

&&

Ω1
pc/fc(M)

−δ
oo

id

��

G±
�

&&

Ω1
pc/fc(M)

δdoo

id

��

−δ G±
�

&&

Ω0
pc/fc(M)

−d
oo

id

��

0

$$

0
0oo

0

��

0 Ω0
pc/fc(M)

0
oo Ω1

pc/fc(M)
−δ

oo Ω1
pc/fc(M)

δd
oo Ω0

pc/fc(M)
−d
oo 0

0
oo

(ii) j = ∂G± and Υ = ∂(something) are exact

(iii) Difference G := G+ − G− defines unshifted Poisson structure

τ : L(M)⊗L(M)
id⊗G−→ L(M)⊗Sol(M)

ev−→ R (unique up to homotopy τ + ∂ρ)

(iv) Quantization CCR : PoChR → AlgAs(ChC) preserves quasi-isomorphisms
and homotopic Poisson structures, i.e. CCR(V, τ + ∂ρ) ' CCR(V, τ)

(v) Loc 3M 7→ AYM(M) := CCR(L(M), τ) defines a homotopy AQFT
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Towards descent in homotopy AQFT

� The inclusion Loc� ↪→ Loc of “diamonds” defines Quillen adjunction

ext : AQFT∞(Loc�) // AQFT∞(Loc) : resoo

� Homotopical descent condition: A ∈ AQFT∞(Loc) is homotopy j-local iff
derived counit ε̃A : Lext resA

∼−→ A is weak equivalence

� Main question: Is this condition fulfilled in examples, e.g. linear Yang-Mills?

/ Technically super (really, super!) complicated! Needs better technology for
dealing with derived adjunctions, maybe ∞-categories à la Joyal/Lurie?

, We can prove that simple (topological) toy-models of non-quantized gauge
theories have this property!

But already this requires heavy machinery, given
by the following theorem based on Lurie’s Seifert-van Kampen Theorem

Thm: Let Manm be category of oriented m-manifolds and j : Diskm →Manm
the full subcategory of m-disks.

Let A : Diskm → AlgE∞(ChK) be functor that is weakly equivalent to a
constant functor with value A ∈ AlgE∞(ChK).

Then the derived extension Lj! A(M) = Sing(M)
L
⊗ A at M ∈Manm is

given by derived higher Hochschild chains on Sing(M) with values in A.
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� Homotopical descent condition: A ∈ AQFT∞(Loc) is homotopy j-local iff
derived counit ε̃A : Lext resA

∼−→ A is weak equivalence

� Main question: Is this condition fulfilled in examples, e.g. linear Yang-Mills?

/ Technically super (really, super!) complicated! Needs better technology for
dealing with derived adjunctions, maybe ∞-categories à la Joyal/Lurie?

, We can prove that simple (topological) toy-models of non-quantized gauge
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Toy-model: R-Chern-Simons theory on 2-surfaces

� Linear observables for flat R-connections on oriented 2-manifold M are

L(M) = Ω•c(M)[1] =
( (−1)

Ω2
c(M)

(0)

Ω1
c(M)

doo
(1)

Ω0
c(M)

doo
)

� Define A ∈ AQFT∞(Man2
max

) ∼= Fun
(
Man2,AlgE∞(ChK)

)
by

A(M) = E∞
(
L(M)

)
[No quantization here!]

� Restriction j∗A to 2-disks is weakly equivalent to constant functor with value
E∞(R[−1]) because

∫
U

: Ω•c(U)[1]→ R[−1] is quasi-iso, for all U ∈ Disk2

� Compute derived extension at M ∈Man2:

(Lj! j∗ A)(M) ' Sing(M)
L
⊗ E∞

(
R[−1]

)
' Sing(M)⊗ E∞

(
R[−1]

)

[Fresse]
' E∞

(
N∗(Sing(M),R)⊗ R[−1]

)
[de Rham]
' E∞

(
Ω•c(M)[1]

)
= A(M)

⇒ This toy-model is homotopy j-local for j : Disk2
max →Man2

max
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Conclusions and outlook

� Describing gauge theories requires higher categorical structures, in particular
stacks and derived stacks

� Shadows of such structures are well-known in physics under the name
BRST/BV formalism

� The homotopical AQFT program that I initiated with M. Benini aims to
introduce the relevant higher algebraic structures into AQFT

� Our main achievements so far are:

� Definition of a model category AQFT∞(C) of homotopy AQFTs

� Formal study of derived adjunctions, including derived local-to-global
extensions, together with simple toy-models

� Construction of linear Yang-Mills theory as a homotopy AQFT via
quantization of (linear approximations of) derived stacks

� What I would like to understand in the nearer future:

? Homotopical descent condition for linear Yang-Mills and similar examples

? Toy-models of non-linear homotopy AQFTs from derived algebraic geometry
[Lurie; Calaque,Pantev,Toën,Vaquié,Vezzosi; Pridham]
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